首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O2 mass-transfer coefficient, k L a, decreased by 20% when the viscosity of a simulated broth increased from 1.38 × 10–3 to 3.43 × 10–3 Pa s in a split-cylinder airlift bioreactor with a broth volume of 41 l. When the paper pulp concentration was below 10 g l–1, k L a hardly changed. While at 30 g l–1, k L a decreased by 56%. C2O4 2– and Na+ were found to have some effect on the k L a value.  相似文献   

2.
The calculation and scale-up of fermentation processes need kLa as one of the most important engineering data. There are two methods to determine kLa depending on power input, aeration rate and the properties of the fermentation broth: static with a balance between air supply and exit, dynamic gassing out with following the changes of dissolved oxygen concentration during periods of air off and a following air on. Within early intervals of fermentation time the data from both methods agree well, while for later time intervals the dynamic method always gives much lower values for kLa than static. The only explanations for this phenomenon are quick changes in the oxygen metabolism or an enzymatic storage of oxygen. For both gassing out and saturation period it is possible to calculate the same absolute amounts of this additional oxygen.  相似文献   

3.
Rates of CO2 desorption from fermentation broths under actual operating conditions were determined by measuring the CO2 partial pressure in the exit gas. The concentrations of CO2 physically dissolved in the broths were measured by the so-called tubing method. Values of kLa for CO2 desorption calculated from these values agreed well with the kLa values for oxygen absorption corrected for the difference in gas diffusivities. The dissolved CO2 concentration in the broth, which seems to bean important operating parameter, can easily be estimated from the CO2 partial pressure in the exit gas, a more easily measurable quantity, if the kLa value is known. For a given value of kLa, assumption of perfect mixing or plug flow in the gas phase made little difference in the calculated values of the dissolved CO2 concentration, indicating that the gas phase was probably in between perfect mixing and plug flow. In industrial fermentors, the CO2 partial pressure in the exit gas can practically be assumed to be in equilibrium with the dissolved CO2 concentration.  相似文献   

4.
The effect of the presence of n-dodecane as a potential oxygen vector during oxygen-limited continuous cultures of a Bacillus strain was studied, under extreme nutrient supply conditions: glucose excess, limitation and starvation. The addition of n-dodecane to the aqueous phase of a mechanically agitated and aerated fermentation increased the kLa by up to 35%. The n-dodecane additions to Bacillus licheniformis cells during starvation (oxygen limitation with concomitant glucose starvation) caused a severe detrimental progressive change in cell physiological state with respect to cytoplasmic membrane polarisation and permeability which was mitigated against by alleviating either the oxygen limitation (by increasing the mean energy dissipation rate or by the addition of n-dodecane as an oxygen vector) or by alleviating the carbon limitation (by resuming the carbon feed or by the addition of a glucose pulse). Further that during periods of excess glucose (glucose pulse) a much higher kLa was required to prevent the onset of anaerobic mixed acid fermentation than could be provided by the addition of n-dodecane alone. n-Dodecane can be used to increase the kLa when added in sufficient quantities to the aqueous phase of a mechanically agitated and aerated bioreactor but the magnitude of this increase is process and vessel geometry specific.  相似文献   

5.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

6.
The production of Cephalosporin-C (CPC) a secondary metabolite, using a mold Acremonium chrysogenum was studied in a lab scale Internal loop air lift reactor. Cephalosporin-C production process is a highly aerobic fermentation process. Volumetric gas–liquid mass transfer coefficient (kLa) and viscosity (η) were evaluated, during the growth and production phases of the microbial physiology. An attempt has been made to correlate the broth viscosity, η and volumetric oxygen transfer coefficient, kLa during the Cephalosporin-C production in an air lift reactor. The impact of biomass concentration and mycelial morphology on broth viscosity has been also evaluated. The broth exhibits a typical non-Newtonian fermentation broth. Rheology parameters like consistency index and fluidity index are also studied.  相似文献   

7.
This paper approaches the problem of oxygen mass transfer. This transfer is in antibiotic biosynthesis liquids produced by microorganisms belonging to the actinomycete and fungi classes, which exhibit a shear thinning non-Newtonian rheological behaviour. The volumetric oxygen mass transfer coefficients in these liquids (kL ab) change during biosynthesis processes. The change is mainly due to rheological parameter modifications, such as increasing the consistency index (K) and decreasing the flow behaviour index (n). The values of kL ab were 3.0–6.5 times lower than those recorded in water, and their decreasing depended on the kL a values obtained without biological liquid and on the nature of fermentation broths, as well. Starting from experimental data, two correlations were established between kL ab and P/VSG and P/VSG, N, respectively. These correlations contain a dimensionless factor (ηamg), which takes into account the rheological properties of the liquid phase and offers the possibility for a fast and sufficiently accurate estimation of kL ab. The empirical correlations developed in the paper correspond reasonably well with the relatively wide variety of experimental data, as in the model proposed by PEREZ and SANDALL , and allow for the comparison of the fermentation batches of the same or different microorganisms; also, they may be applied to the workings of design, scale-up, control and monitoring of bioreactors.  相似文献   

8.
An oxygen transfer model was established for Pichia pastoris growing on glycerol and methanol in a stirred tank bioreactor and expressing a recombinant human serum albumin (rHSA). This was based on pseudo-steady state mass balance, where the volumetric O2 transfer coefficient, k L a, was estimated as a function of power input per unit volume and aeration rate. Under pseudo-steady state, the O2 transfer rate model matched the O2 uptake rate obtained from a previous macrokinetic model. This procedure was also applied to estimate biomass concentration by using the on-line rolling identification approach.  相似文献   

9.
Lignocellulosic biomass such as agri‐residues, agri‐processing by‐products, and energy crops do not compete with food and feed, and is considered to be the ideal renewable feedstocks for biofuel production. Gasification of biomass produces synthesis gas (syngas), a mixture primarily consisting of CO and H2. The produced syngas can be converted to ethanol by anaerobic microbial catalysts especially acetogenic bacteria such as various clostridia species.One of the major drawbacks associated with syngas fermentation is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. One way of addressing this issue is the improvement in reactor design to achieve a higher volumetric mass transfer coefficient (kLa). In this study, different reactor configurations such as a column diffuser, a 20‐μm bulb diffuser, gas sparger, gas sparger with mechanical mixing, air‐lift reactor combined with a 20‐μm bulb diffuser, air‐lift reactor combined with a single gas entry point, and a submerged composite hollow fiber membrane (CHFM) module were employed to examine the kLa values. The kLa values reported in this study ranged from 0.4 to 91.08 h?1. The highest kLa of 91.08 h?1 was obtained in the air‐lift reactor combined with a 20‐μm bulb diffuser, whereas the reactor with the CHFM showed the lowest kLa of 0.4 h?1. By considering both the kLa value and the statistical significance of each configuration, the air‐lift reactor combined with a 20‐μm bulb diffuser was found to be the ideal reactor configuration for carbon monoxide mass transfer in an aqueous phase. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

10.
A new method was developed for estimating the volumetric oxygen transfer coefficient, kLa, in a fermentor. Various methods were investigated for the on-line estimation of kLa with an analog computer employing a steepest-descent calculation technique. The method by which kLa is estimated (by minimizing the error residue of the model) was found to be very applicable. A method for the simultaneous estimation of the volumetric oxygen transfer coefficient and respiration rate in biological systems is also presented.  相似文献   

11.
The potential use of n-dodecane as an oxygen vector for enhancement of Crypthecodinium cohnii growth and docosahexaenoic acid (DHA) production was studied. The volumetric fraction of oxygen vector influenced the gas–liquid volumetric mass transfer coefficient k L a positively. The k L a increased almost linearly with the increase of volumetric fraction of n-dodecane up to 1%. The stirring rate showed a higher influence on the k L a than the aeration rate. The effects of this hydrocarbon on C. cohnii growth and DHA production were then investigated. A control batch fermentation without n-dodecane addition (CF) and a batch fermentation where n-dodecane 1% (v/v) was added (DF) were carried out simultaneously under the same experimental conditions. It was found that, before 86.7 h of fermentation, the biomass concentration, the specific growth rate, the DHA, and total fatty acids (TFA) production were higher in the CF. After this fermentation time, the biomass concentration, the DHA and TFA production were higher in the DF. The highest DHA content of biomass (6.14%), DHA percentage of TFA (51%), and DHA production volumetric rate r DHA (9.75 mg l−1 h−1) were obtained at the end of the fermentation with n-dodecane (135.2 h). The dissolved oxygen tension (DOT) was always higher in the DF, indicating a better oxygen transfer due to the oxygen vector presence. However, since the other C. cohnii unsaturated fatty acids percentages did not increase with the oxygen availability increase due to the n-dodecane presence, a desaturase oxygen-dependent mechanism involved in the C. cohnii DHA biosynthesis was not considered to explain the DHA production increase. A selective extraction through the n-dodecane was suggested.  相似文献   

12.

The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h−1) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L−1, characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20–121 °C), pH (2–12) and salinity [5–20% (w/v) of NaCl].

  相似文献   

13.
In Drosophila melanogaster, clines of starvation resistance along a latitudinal gradient (south to north) have been reported in India, which matched with their cline for total body lipids (TL). Nevertheless, producing too many reserves is likely to be costly and a trade‐off might exist with life‐history traits. Previous studies on starvation resistance and life‐history traits of D. melanogaster have mainly focused on quantification of total body lipids, instead of separating ovarian lipids from total body lipids. In the present study, we have quantified absolute ovarian lipids (OL) versus absolute body lipids excluding ovarian lipids (BL) and examined associations with fecundity as well as starvation resistance in two latitudinal populations (8.34 vs. 32.43°N) of Dmelanogaster. Firstly, we observed a trade‐off between BL and OL that matched the trade‐off of starvation resistance, longevity versus fecundity and development time in latitudinal populations of D. melanogaster. Southern populations had higher starvation resistance, more BL and lesser OL, whereas northern populations had enhanced fecundity, OL and lesser BL. Secondly, within population, starvation resistance also correlated with BL, and fecundity with OL. However, there was no correlation between starvation resistance and OL. Moreover, there was utilization of BL and nonutilization of OL under starvation stress. Therefore, resources invested for fecundity in the form of OL were independent of evolved starvation resistance in D. melanogaster. Our results suggest that a common pool of energy storage compounds (lipids) are allocated differentially between fecundity and starvation resistance and are consistent with Y‐model of resource allocation.  相似文献   

14.
15.
Herein, we described a scale-up strategy focused on the dissolved carbon dioxide concentration (dCO2) during fed-batch cultivation of Chinese hamster ovary cells. A fed-batch culture process for a 2000-L scale stainless steel (SS) bioreactor was scaled-up from similarly shaped 200-L scale bioreactors based on power input per unit volume (P/V). However, during the 2000-L fed-batch culture, the dCO2 was higher compared with the 200-L scale bioreactor. Therefore, we developed an alternative approach by evaluating the kLa values of O2 (kLa[O2]) and CO2 [kLa(CO2)] in the SS bioreactors as a scale-up factor for dCO2 reduction. The kLa ratios [kLa(CO2)/kLa(O2)] were different between the 200-L and 2000-L bioreactors under the same P/V condition. When the agitation conditions were changed, the kLa ratio of the 2000-L scale bioreactor became similar and the P/V value become smaller compared with those of the 200-L SS bioreactor. The dCO2 trends in fed-batch cultures performed in 2000-L scale bioreactors under the modified agitation conditions were similar to the control. This kLa ratio method was used for process development in single-use bioreactors (SUBs) with shapes different from those of the SS bioreactor. The kLa ratios for the SUBs were evaluated and conditions that provided kLa ratios similar to the 200-L scale SS bioreactors were determined. The cell culture performance and product quality at the end of the cultivation process were comparable for all tested SUBs. Therefore, we concluded that the kLa ratio is a powerful scale-up factor useful to control dCO2 during fed-batch cultures.  相似文献   

16.
Conversion of D‐xylose to xylitol by Candida boidinii NRRL Y‐17213 was studied under anaerobic and oxygen limited conditions by varying the oxygen transfer coefficient kLa. Shake flask experiments were used to provide the preliminary information required to perform experiments in a bioreactor. The yeast did not grow under fully anaerobic conditions, but anaerobic formations of xylitol, ethanol, ribitol, and glycerol were observed as well as D‐xylose assimilation of 11 %. In shake flasks, with an initial D‐xylose concentration of 50 g/L, an increase in kLa from 8 to 46 h–1 resulted in a faster growth, higher rate of substrate uptake and lower yields of products. The highest xylitol productivity (0.052 g/L h) was attained at kLa = 8 h–1. At kLa = 46 h–1, 98.6 % of D‐xylose was consumed and mainly converted to biomass. Using 130 g/L D‐xylose, kLa was varied in the fermenter from 26 to 78 h–1. The percentage of consumed D‐xylose increased from 31 % at kLa = 26 h–1 to 93–94 % at all other aeration levels. Biomass yield increased with kLa, whereas ethanol, ribitol, and glycerol yields exhibited an opposite dependence on the oxygenation level. The most favorable oxygen transfer coefficient for xylitol formation, in the fermenter, was kLa = 47 h–1 when its concentration (57.5 g/L) surpassed ethanol accumulation by 3.6‐fold, and the glycerol plus ribitol by 10‐fold. Concurrently, xylitol yield and productivity reached 0.45 g/g and 0.26 g/L h, respectively. The volumetric xylitol productivity was affected more by changes in the aeration than the corresponding yield.  相似文献   

17.
The influence of the rheology of some antibiotic biosynthesis liquids produced by Streptomyces aureofaciens, Nocardia mediterranei and Penicillium chrysogenum on the volumetric liquid phase oxygen transfer coefficient, kLa, and gas holdup, εG, together with the influence of superficial gas velocity, were studied in a bubble column bioreactor, using samples of fermentation liquids taken from industrial stirred tank fermenters, at 30-hour intervals during fermentation batch. The results were compared to those of previous studies from literature on non-Newtonian homogeneous fluids, such as CMC-Na, xanthan and starch solutions, respectively. In the heterogeneous broths, εG and kLa decreased with increasing apparent viscosity of the broth and increased with increasing superficial velocity. The experimental data were correlated using non-linear regression with correlation coefficients above 0.85.  相似文献   

18.
The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.  相似文献   

19.
Gas–liquid mass transfer is often rate‐limiting in laboratory and industrial cultures of aerobic or autotrophic organisms. The volumetric mass transfer coefficient kLa is a crucial characteristic for comparing, optimizing, and upscaling mass transfer efficiency of bioreactors. Reliable dynamic models and resulting methods for parameter identification are needed for quantitative modeling of microbial growth dynamics. We describe a laboratory‐scale stirred tank reactor (STR) with a highly efficient aeration system (kLa ≈ 570 h?1). The reactor can sustain yeast culture with high cell density and high oxygen uptake rate, leading to a significant drop in gas concentration from inflow to outflow (by 21%). Standard models fail to predict the observed mass transfer dynamics and to identify kLa correctly. In order to capture the concentration gradient in the gas phase, we refine a standard ordinary differential equation (ODE) model and obtain a system of partial integro‐differential equations (PIDE), for which we derive an approximate analytical solution. Specific reactor configurations, in particular a relatively short bubble residence time, allow a quasi steady‐state approximation of the PIDE system by a simpler ODE model which still accounts for the concentration gradient. Moreover, we perform an appropriate scaling of all variables and parameters. In particular, we introduce the dimensionless overall efficiency κ, which is more informative than kLa since it combines the effects of gas inflow, exchange, and solution. Current standard models of mass transfer in laboratory‐scale aerated STRs neglect the gradient in the gas concentration, which arises from highly efficient bubbling systems and high cellular exchange rates. The resulting error in the identification of κ (and hence kLa) increases dramatically with increasing mass transfer efficiency. Notably, the error differs between cell‐free and culture‐based methods of parameter identification, potentially confounding the determination of the “biological enhancement” of mass transfer. Our new model provides an improved theoretical framework that can be readily applied to aerated bioreactors in research and biotechnology. Biotechnol. Bioeng. 2012; 109: 2997–3006. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The cholesterol lowering drug, Lovastatin (Mevacor), acts as an inhibitor of HMGCoA reductase, and is produced from an Aspergillus terreus fermentation.Pilot scale studies were carried out in 800 liter fermenters to determine the effects of cell morphology on the oxygen transport properties of this fermentation. Specifically, parallel fermentations giving (i) filamentous mycelial cells, and (ii) discrete mycelial pellets, were quantitatively characterized in terms of broth viscosity, availability of dissolved oxygen, oxygen uptake rates and the oxygen transfer coefficient under identical operating conditions.The growth phase of the fermentation, was operated using a cascade control strategy which automatically changed the agitation speed with the goal of maintaining dissolved oxygen at 50% saturation. Subsequently stepwise changes were made in agitation speed and aeration rate to evaluate the response of the mass transfer parameters (DO, OUR, and k L a). The results of these experiments indicate considerable potential advantages to the pellet morphology from the standpoint of oxygen transport processes.List of Symbols DO % sat. Dissolved oxygen concentration - k L a h–1 Gas-liquid mass transfer coefficient - OUR mmol/dm3h Oxygen uptake rate - P/V KW/m3 Agitator power per unit volume - V s m/s Superficial air velocity - app cP Apparent viscosity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号