首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major differences were found among living algae, saprophytic ecosystems, nonliving algae, and other organic materials in their ability to concentrate 85strontium and 137cesium from water solutions of different Ca/K ratios and quantities available from batch and flowthrough cultures. As expected, live algae, greatly concentrate these radionuclides. The concentration factors of nonliving organic materials were much lower and varied with the material, not with the Ca/K ratio. The effect of high Ca++ and high K+ was to lower the uptake of cesium more than strontium.  相似文献   

2.
The uptake of 137Cs and 90Sr by six varieties of spring wheat (Triticum aestivum) was compared in field trials on land contaminated by the Chernobyl accident. All the experimental varieties are officially adopted for agricultural use in Belarus and are used in large-scale production. Under identical conditions of nutrition, the productivity of the varieties varied significantly by a factor of 1.3. The extent of 137Cs and 90Sr accumulation by wheat grain, quantified as the concentration ratio, differed between the varieties by as much as a factor of 1.6, for both radionuclides. There was a significant linear positive correlation between the 90Sr activity concentration in grain and straw, and the calcium concentration. The correlation between 137Cs and potassium was not significant. The results suggest that certain varieties of spring wheat used in normal agricultural practice accumulate less 137Cs and 90Sr into grain than others. Some spring wheat varieties accumulated relatively less 137Cs, but did not accumulate less 90Sr. One variety, Quattro, had a significantly lower uptake of both 90Sr (for grain) and 137Cs (for both grain and straw) than that of the other varieties tested. The reduction efficiency achieved by the use of these varieties, however, is not as high as that achieved by soil amelioration techniques in the past. Nevertheless, since there are no additional costs or production losses associated with these varieties, their use in the contaminated areas is worth considering as a simple, practical, and effective contribution to reducing the uptake of both 90Sr and 137Cs and allowing farmers to produce food-grade grain.  相似文献   

3.
Three treatments of zinc (0.05, 0.5, 1.0 mg Zn l−1) and a control could be identified by different algal communities in outdoor, flow-through, stream mesocosms. Established communities were continuously exposed to Zn, and samples were collected on days 0, 2, 5, 10, 20 and 30 after treatment began. Experiments were conducted in spring, summer, and fall 1984. Control stream mesocosms could be identified by diatoms in all seasons. The 0.05 mg Zn l−1 treatment could be identified by certain diatom taxa being more abundant than in the control in all seasons and by a filamentous green alga in summer and fall. The 0.5 mg Zn l−1 treatment could be identified by a filamentous green alga in fall. The 1.0 mg Zn l−1 treatment was dominated by unicellular green algae in all seasons and by a filamentous blue-green alga in summer. A similarity index (SIMI) indicated that Zn-stressed samples generally became less similar to control samples as Zn concentration increased from 0.05 to 1.0 mg Zn l−1. Total biovolume-density of all taxa responded slower than individual taxa in spring and failed to distinguish between Zn treatments in summer and fall. Zinc bound to periphyton was much better than total Zn in water for identifying Zn treatments. Zinc treatments as low as 0.05 mg Zn l−1 changed algal species composition despite 0.047 mg Zn l−1 being the Criterion of the US Environmental Protection Agency for the 24-h average of total recoverable Zn.  相似文献   

4.

Background

Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the elimination of 137Cs or 90Sr from the body. We evaluated the potential of Chlorella as a decorporation agent in vitro and in vivo, using 85Sr instead of 90Sr.

Methods

In vitro experiments of adsorption of 137Cs and 85Sr to Chlorella were performed under wide pH conditions. The maximum sorption capacity of Chlorella to strontium was estimated using the Langmuir model. A 85Sr solution was orally administrated to mice pretreated with Chlorella. At 48 h after 85Sr administration, the biodistribution of radioactivity was determined.

Results

In the in vitro experiments, although 85Sr barely adsorbed to Chlorella at low pH, the 85Sr adsorption ratio to Chlorella increased with increasing pH. The maximum sorption capacity of Chlorella to strontium was 9.06 mg / g. 137Cs barely adsorbed to Chlorella under any pH conditions. In the biodistribution experiments, bone accumulation of radioactivity after 85Sr administration was significantly decreased in the Chlorella pretreatment group compared with the non-treatment control group.

Conclusions

In conclusion, these results indicated that Chlorella could inhibit the absorption of 90Sr into the blood and enhance the elimination of 90Sr from the body through adsorption in intestine. Further studies are required to elucidate the mechanism and the components of Chlorella needed for adsorption to strontium and could promote the development of more effective decorporation agents.  相似文献   

5.
The accumulation levels of anthropogenic 90Sr and 134Cs and 137Cs radionuclides in the marsh frog have been studied in the areas of the Beloyarskii water-storage reservoir (an industrial storm-water discharge channel of the nuclear power station) and the Verkhnii Tagil water-storage reservoir (the Tagil River down-stream of the dam). No significant distinction in the radionuclide accumulation (90Sr and 137Cs) depending on the amphibian sex and age is detected. Comparable levels of the accumulation of radionuclides in the marsh frog, when compared to the other representatives of the water ecosystem, are estimated. An assumption of the presence of some unidentified source of radioactive contamination of marsh frogs has been made; cesium-137 may be transferred from it to the Tagil River by the frogs.  相似文献   

6.
There is a scarcity of data on transfer of both natural and anthropogenic radionuclides to detritivorous invertebrates for use in the assessment of radiation exposure. Although mosses and lichens have been extensively used in biomonitoring programs, the data on transfer of radionuclides to these species are limited, particularly for natural radionuclides. To enhance the available data, activity concentrations of 137Cs, 226Ra and 228Ra were measured in ants, mosses and lichens and corresponding undisturbed soil collected from semi-natural ecosystems in Serbia and Montenegro and biota/soil concentration ratios (CR) calculated. Since the majority of internal dose to biota is expected to come from 40K, the activity concentrations of this radionuclide were also determined. The mean CR values for 137Cs, 226Ra and 228Ra in ants analyzed in this study were found to be 0.02, 0.06 and 0.02, respectively. The mean CR values of radionuclides in mosses were found to be 2.84 for 137Cs, 0.19 for 226Ra and 0.16 for 228Ra, while those in lichens were found to be 1.08 for 137Cs, 0.15 for 226Ra and 0.13 for 228Ra. The CR values obtained in this study were compared with default CR values used in the ERICA Tool database and also with those reported in other studies.  相似文献   

7.
This study is dedicated to the environmental monitoring of radionuclides released in the course of the Fukushima nuclear accident. The activity concentrations of β -emitting 90Sr and β/γ-emitting 134Cs and 137Cs from several hot spots in Japan were determined in soil and vegetation samples. The 90Sr contamination levels of the samples were relatively low and did not exceed the Bq⋅g−1 range. They were up four orders of magnitude lower than the respective 137Cs levels. This study, therefore, experimentally confirms previous predictions indicating a low release of 90Sr from the Fukushima reactors, due to its low volatility. The radiocesium contamination could be clearly attributed to the Fukushima nuclear accident via its activity ratio fingerprint (134Cs/137Cs). Although the correlation between 90Sr and 137Cs is relatively weak, the data set suggests an intrinsic coexistence of both radionuclides in the contaminations caused by the Fukushima nuclear accident. This observation is of great importance not only for remediation campaigns but also for the current food monitoring campaigns, which currently rely on the assumption that the activity concentrations of β-emitting 90Sr (which is relatively laborious to determine) is not higher than 10% of the level of γ-emitting 137Cs (which can be measured quickly). This assumption could be confirmed for the samples investigated herein.  相似文献   

8.
Empirical data on the behavior of radionuclides in the biosphere are needed for validating radioecological models. In this study, data collected from two lakes in Northern Finland were used to investigate the transfer of 137Cs from lake water into fish during a 20-year period after the Chernobyl nuclear power plant accident. The results indicated that transfer of 137Cs in the food chains investigated is nonlinear: the water-to-fish concentration ratios (CRs) decreased with increasing 137Cs concentration in water. Major deviation from linearity (constant CR) commonly assumed in radioecological modeling was observed only at low 137Cs concentrations in water. Other findings of potential importance for radioecological models were that 137Cs concentrations were threefold higher in piscivores than in non-piscivores and that no differences in 137Cs uptake were found between the two piscivorous species (pike and perch) studied or between three non-piscivorous species (vendace, white fish, and roach) representing different feeding habits (planktivore, benthivore, and mixed diet).  相似文献   

9.
The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 1017 Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.  相似文献   

10.
The behavior of radiocesium (137Cs) in aquatic plants (five species) and algae (three genera) grown in either a river (one sampling point) or pond (four sampling points) in the vicinity of the Fukushima Daiichi nuclear power plant was investigated. The 137Cs concentration of <0.45-μm fractions of water taken from the river and ponds was between 5.01 × 10?1 and 2.98 Bq/L, while that of sediment was between 4.85 × 103 and 5.72 × 104 Bq/kg dry weight. The ratio of 137Cs concentration of sediment/water in ponds was ~104. The sediment-to-plant transfer factor (TF) [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/kg dry weightsediment)?1] was also measured. For aquatic plants, the highest value was 5.55 for Potamogeton crispus from the river, while the lowest was 3.34 × 10?2 for P. distinctus from a pond. There were significant differences in values between aquatic plants belonging to the same genus. The water-to-plant TF [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/Lwater)?1] of filamentous algae (Spirogyra sp.) and cyanobacteria (coexisting Anabaena sp. and Microcystis sp.) were 2.39 × 103 and 1.26 × 103, respectively. The 137Cs concentration of cyanobacteria in pond water was 4.87 × 10?1 Bq/L, which was the same order of magnitude as the 137Cs concentration of pond water. Enrichment of 137Cs in cyanobacteria was not observed.  相似文献   

11.
The diffusive transport of 137Cs, 90Sr, and 60Co in the clay of a radioactive waste disposal site at PINSTECH was studied to assess the safety of the underlying permeable zone against the release of these radionuclides from buried waste containers in the clay. Diffusion coefficients of these radionuclides were estimated by reservoir to sediment diffusion method via their stable counterparts in a laboratory experiment. A curve-fitting procedure was applied on the measured concentration-time profiles of the reservoir using the one-dimensional solute transport equation with a nonlinear least squares technique. Distribution coefficients were determined in laboratory batch experiments. Diffusive transport simulations were performed with the estimated values of diffusion coefficients and distribution coefficients using the one-dimensional solute transport equation describing Fickian diffusion, equilibrium adsorption, and radioactive decay. The transport simulation results showed that 137Cs, 90Sr, and 60Co will transport distances of 4.33, 3.77, and 1.51 meters, respectively, in the clay before their activity concentrations will drop to clearance levels set by the International Atomic Energy Agency (IAEA), below which the waste is treated as non-radioactive. This showed that concentrations more than clearance levels will not be able to transport to the permeable zone at a minimum depth of seven meters from the ground surface if the waste containers are disposed in a trench below which a clay layer with a thickness of 4.33 meters or more exists.  相似文献   

12.
Doi H  Takahara T  Tanaka K 《PloS one》2012,7(1):e29295
Understanding the long-term behavior of radionuclides in organisms is important for estimating possible associated risks to human beings and ecosystems. As radioactive cesium (137Cs) can be accumulated in organisms and has a long physical half-life, it is very important to understand its long-term decay in organisms; however, the underlying mechanisms determining the decay process are little known. We performed a meta-analysis to collect published data on the long-term 137Cs decay process in fish species to estimate biological (metabolic rate) and ecological (trophic position, habitat, and diet type) influences on this process. From the linear mixed models, we found that 1) trophic position could predict the day of maximum 137Cs activity concentration in fish; and 2) the metabolic rate of the fish species and environmental water temperature could predict ecological half-lives and decay rates for fish species. These findings revealed that ecological and biological traits are important to predict the long-term decay process of 137Cs activity concentration in fish.  相似文献   

13.
Summary Indole-3-acetic acid (IAA) stimulated the growth (increase in dry weight) of the blue-green algae Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum, Anabaena cylindrica, and Tolypothrix tenuis and the green algae Chlorella pyrenoidosa, Ankistrodesmus falcatus and Scenedesmus obliquus growing under as sterile conditions as possible. The optimum concentration varied from species to species; in the blue-green algae it ranged from 10-5 to 10-9 M and in the green algae it was 10-3 M. These results are discussed in the light of present studies in this field.  相似文献   

14.
A small-scale greenhouse investigation was undertaken using Goat willow (Salix caprea) and aspen (Populus tremula) to evaluate the potential of short rotation coppice for remediation of 137Cs- and 90Sr-contaminated sites. Results showed that both species were able to accumulate these radionuclides from a representative disposal soil (aged) and a spiked soil S. caprea accumulating greater levels of 137Cs than P. tremula, with no difference between species for 90Sr accumulation. For each radionuclide, the distribution in both species was similar, with 137Cs accumulation greatest in the roots, whereas 90Sr accumulation was greatest in the leaves. It was also evident that the soil-to-plant transfer factor (Tf) values for 90Sr were greater than for 137Cs, agreeing with differences in the reported bioavailailablity of these radionuclides in soil Based on the Tf values for S. caprea (conservative), estimated remediation times were 92 and 56 yr, for 137Cs and 90Sr, respectively. It is suggested that the selection of Salix species grown in a system of SRC provides a significant opportunity for removal of both 137Cs and 90Sr, primarily due to its higher biomass production. However, for 137Cs phytoremediation investigations into the appropriate use of soil amendments for increasing bioavailability are required.  相似文献   

15.
Concentration of artificial radionuclides in bodies of arctic grayling from the radioactively contaminated zone of the Yenisei River in the vicinity of the Mining-and-Chemical Combine of Rosatom was investigated in 2007-2010. Gamma-spectrometric analysis revealed artificial radionuclides in all the organs and tissues of fish. The isotope composition was the most diverse (60Co, 65Zn, 85Sr, 99Mo, 106Ru, 137Cs, 144Ce) in internal organs of grayling. The activity of radionuclides increased in internal organs including liver and kidney and in the content of digestive tract of grayling during winter and spring, which coincided with the change in the feeding spectrum of grayling. The trophic transfer factor of radionuclides from zoobenthos (Philolimnogammarus spp.) to whole bodies and muscles of grayling was over 1 (1.8-2.4) only for natural radionuclide 40K. The trophic transfer of artificial radionuclides (60Co, 65Zn, 137Cs) to muscles and bodies of grayling was one-two orders of magnitude less effective.  相似文献   

16.
Radioactive contamination of small birds (484 individuals, 44 species) was investigated in the Chernobyl zone (Ukraine) in 2003-2005. Values variation of 90Sr and of 137Cs activity concentration reached 3-4 orders of magnitude even in one site, and maximum values amounted to hundreds Bq/g at the central plots of the zone. The biggest contamination is appropriate to birds in breeding season and to settled species, whilst migrants are the "cleanest". Change of contamination within a year reflects seasonal and short-term changes in birds diet and in behaviour. During breeding season females have higher activity concentration of 90Sr, while on 137Cs accumulation sexual differences are absent. In other seasons radioactive contamination of male and female does not differ if they live in similar conditions and have similar migratory behavior. Young birds during fledging and just after, as a rule, have higher levels of 90Sr contamination than adults, and actually do not differ on 137Cs accumulation. On a set of own and published data, it was assumed, that in small birds the half-life period of 137Cs extraction amounts to 1-2 days, and 90Sr- 5-10 days, and dynamic equilibrium of the radionuclides turnover in organism is reached over 4-7 and 17-34 days, respectively, after the birds arrival on the contaminated site. Among 44 studied species, those who search invertebrates in soil top layer or forest litter (thrushes). have noticeably higher accumulation of 90Sr and of 137Cs. Specific differences of radionuclides accumulation for the rest birds were not revealed due to small sample sizes of the species.  相似文献   

17.
As a determinant of the associated health risks, the behavior of radionuclides in natural ecosystems needs to be better understood. Therefore, the activity concentration of various long-lived radionuclides released due to the Chernobyl accident, and the corresponding contributions to the whole-body dose rate, was studied as a function of time in mammalian indicator species inhabiting the natural forest ecosystems of Belarus, the bank vole (Clethrionomys glareolus) and the yellow-necked mouse (Apodemus flavicollus). The activity concentrations of 137Cs, 134Cs, 90Sr, 238Pu, 239,240Pu, 241Pu and 241Am in soil and in animals were measured at five monitoring sites with different ground deposition of radionuclides at different distances from the destroyed reactor. The observed temporal pattern of the radionuclide activity concentration in the studied animal populations reflects the changes in biological availability of these isotopes for biota, mostly due to fuel particle destruction and appearance of dissolved and exchangeable forms of radionuclides. The time course of 134+137Cs activity concentrations in animal populations appeared as a sequence of increase, peak and decrease. Maximal levels of radiocesium occurred 1–2 years after deposition, followed by an exponential decrease. Concentrations of incorporated 90Sr increased up to the tenth year after deposition. The activity concentrations of transuranic elements (238Pu, 239,240Pu, 241Pu and 241Am) were much lower than those of the other radionuclides, in the studied animals. A considerable activity of 241Am in animals from areas with high levels of contamination was firstly detected 5 years after deposition, it increased up to the tenth year and is expected to increase further in the future. Maximal values of the whole-body absorbed dose rates occurred during the year of deposition, followed by a decrease in the subsequent period. Generally, this decrease was monotonic, mainly determined by the decrease of the external γ-ray dose rate, but there were exceptions due to the delayed maximum of internal exposure. The inter-individual distributions of radionuclide concentrations and lifetime whole-body absorbed doses were asymmetric and close to log-normal, including concentrations and doses considerably higher than the population mean values.  相似文献   

18.
The extracted biomasses of four cyanobacteria (Nostoc carneum, Nostoc insulare, Oscillatoria geminata, and Spirulina laxissima) grown in axenic mass cultures, and of four samples of Laminaria obtained from different locations (L. digitata I and II, France; L. japonica I and II, China; all waste products from alginate production) were tested for their ability to adsorb four radionuclides (134Cs, 85Sr, 226Ra, and 241Am) under different pH regimes. In addition, two of the cyanobacterial biomasses (N. carneum. and O. geminata) and the four Laminaria biomasses were phosphorylated before being tested as radionuclide adsorbers. The non-phosphorylated cyanobacterial biomasses showed very low adsorption of 134Cs but substantially higher removal of 85Sr and 226Ra, which increased with increasing pH. 241Am was almost completely removed from the solution at low pH, but less at higher pH. After phosphorylation, removal of 134Cs, 85Sr and 226Ra by the cyanobacterial biomasses was improved, particularly at lower pH, but there was almost no adsorption of 241Am. The non-phosphorylated Laminaria biomasses showed good removal of 134Cs and very good adsorption of 85Sr and 226Ra. Removal of 241Am was high at low pH but decreased with increasing pH. After phosphorylation, adsorption of 134Cs by Laminaria samples was slightly improved; removal of 85Sr and 226Ra was increased at low pH with a tendency towards decrease in adsorption with increasing pH; but almost no 241Am was adsorbed. The origin of the cyanobacterial and Laminaria materials appeared to have little effect on the adsorption of the radionuclides.  相似文献   

19.
Water from a hypertrophic lake rich in filamentous blue-green algae was passed through a continuous-flow system of aquaria containing Daphnia magna, and a control system without Daphnia. Daphnia caused a significant decrease in the blue-green algal density, and a two-fold reduction in filament length. It is suggested that feeding activity of Daphnia may result in an increase in the availability of blue-green filaments to filter-feeding cladocerans.  相似文献   

20.
J. Kada  M. Heit 《Hydrobiologia》1992,246(3):231-241
We determined the inventories of four anthropogenic trace elements, Pb, Zn, As, and Cd, and two radionuclides, 137Cs and excess 210Pb, in sediment cores collected from eight remote lakes in the Adirondack region of the northeastern United States. The inventories of all six substances vary considerably among the sediment cores, although the lakes and their associated catchments must have received similar cumulative per unit area atmospheric inputs of these substances. These variations are highly correlated, indicating that the trace elements and radionuclides are affected in a coherent way by the processes controlling their deposition to the sediments of these lakes. Assuming that the anthropogenic trace element inventories in each sediment core are enhanced or depleted relative to cumulative atmospheric deposition to the extent indicated by the sediment core inventories of either 137Cs or excess 210Pb, we produced estimates of the cumulative atmospheric inputs of the four anthropogenic trace elements to this region. Comparison of the excess 210Pb normalized anthropogenic Pb, Zn, Cd inventories of the Adirondack sediment cores with excess 210Pb normalized inventories of the same substances in a group of South Central Ontario lakes suggests that the Adirondack region has received greater cumulative anthropogenic inputs of Pb, Zn and Cd by a factor of 1.6, 4.5, and 2.9, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号