首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Antioxidant enzymes are essential proteins that maintain cell proliferation potential by protecting against oxidative stress. They are present in many organisms including harmful algal bloom (HAB) species. We previously identified the antioxidant enzyme 2-Cys peroxiredoxin (PRX) in the raphidophyte Chattonella marina. This enzyme specifically decomposes a hydrogen peroxide (H2O2). PRX is the only antioxidant enzyme so far identified in C. marina. This study used mRNA-seq, using Trinity assemble and blastx for annotation, to identify a further five antioxidant enzymes from C. marina: Cu Zn superoxide dismutase (Cu/Zn-SOD), glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX) and thioredoxin (TRX). In the gene expression analysis of six enzymes (Cu/Zn-SOD, GPX, CAT, APX, TRX and PRX) using light-acclimated (100 μmol photons m?2 s?1) C. marina cells, only PRX gene expression levels were significantly increased by strong light irradiation (1000 μmol photons m?2 s?1). H2O2 concentration and scavenging activity were also increased and significantly positively correlated with PRX gene expression levels. In dark-acclimated cells, expression levels of all antioxidant enzymes except APX were significantly increased by light irradiation (100 μmol photons m?2 s?1). Expression decreased the following day, with the exception of PRX expression. With the exception of CAT, gene expression of antioxidant enzymes was not significantly induced by artificial H2O2 treatment, although average gene expression levels were slightly increased in some enzymes. Thus, we suggest that light is the main trigger of gene expression, but the resultant oxidative stress is also a possible factor affecting the gene expression of antioxidant enzymes in C. marina.  相似文献   

2.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

3.
The effect of oxidative stress on indole alkaloids accumulation by cell suspensions and root cultures of Uncaria tomentosa in bioreactors was investigated. Hydrogen peroxide (H2O2, 200 μM) added to U. tomentosa cell suspension cultures in shaken flasks induced the production of monoterpenoid oxindole alkaloids (MOA) up to 40.0 μg/L. In a stirred tank bioreactor, MOA were enhanced by exogenous H2O2 (200 μM) from no detection up to 59.3 μg/L. Root cultures grew linearly in shaken flasks with a μ=0.045 days?1 and maximum biomass of 12.08±1.24 g DW/L (at day 30). Roots accumulated 3α‐dihydrocadambine (DHC) 2354.3±244.8 μg/g DW (at day 40) and MOA 348.2±32.1 μg/g DW (at day 18). Exogenous addition of H2O2 had a differential effect on DHC and MOA production in shaken flasks. At 200 μM H2O2, MOA were enhanced by 56% and DHC by 30%; while addition of 800 and 1000 μM H2O2, reduced by 30–40% DHC accumulation without change in MOA. Root cultures in the airlift reactor produced extracellular H2O2 with a characteristic biphasic profile after changing aeration. Maximum MOA was 9.06 mg/L at day 60 while at this time roots reached ca. 1 mg/L of DHC. Intracellular H2O2 in root cultures growing in the bioreactor was 0.87 μmol/g DW compared to 0.26 μmol/g DW of shaken flasks cultures. These results were in agreement with a higher activity of the antioxidant enzymes superoxide dismutase and peroxidase by 6‐ and 2‐times, respectively. U. tomentosa roots growing in the airlift bioreactor were exposed to an oxidative stress and their antioxidant system was active allowing them to produce oxindole alkaloids.  相似文献   

4.
An efficient, rapid, and reproducible plant regeneration protocol was successfully developed for Abrus precatorius L. using mature nodal explants excised from a 5-year-old field grown plant. The highest shoot regeneration frequency (87 %) with maximum number of multiple shoots (15.0) and shoot length (4.8 cm) were recorded on Murashige and Skoog (MS) medium amended with 2.5 μM thidiazuron, 120 mg dm?3 polyvinylpyrrolidone, and 0.5 μM α-naphthalene acetic acid. The best treatment for maximum root (4.0) induction was half strength MS medium supplemented with 1.5 μM indole-3-butyric acid. The in vitro plantlets with well-developed shoots and roots were successfully transferred into plastic cups with Soilrite and acclimatized in a culture room under photon flux density (PFD) of 150 μmol m?2 s?1, thereafter transferred to a greenhouse with PFD of 300 μmol m?2 s?1, and finally to a field with 70 % survival rate. During the acclimatization period (0–49 d), leaf chlorophyll and carotenoid content increased whereas malondialdehyde and H2O2 content decreased probably due to increasing activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase). Our work suggests that micropropagated plants developed an antioxidant enzymatic protective system to avoid oxidative stress during establishment under ex vitro environment.  相似文献   

5.
The photosynthetic performance of macroalgae isolated in Antarctica was studied in the laboratory. Species investigated were the brown algae Himantothallus grandifolius, Desmarestia anceps, Ascoseira mirabilis, the red algae Palmaria decipiens, Iridaea cordata, Gigartina skottsbergii, and the green algae Enteromorpha bulbosa, Acrosiphonia arcta, Ulothrix subflaccida and U. implexa. Unialgal cultures of the brown and red algae were maintained at 0°C, the green algae were cultivated at 10°C. IK values were between 18 and 53 μmol m?2 s?1 characteristic or low light adapted algae. Only the two Ulothrix species showed higher IK values between 70 and 74 μmol m?2 s?1. Photosynthesis compensated dark respiration at very low photon fluence rates between 1.6 and 10.6 μmol m?2 s?1. Values of α were high: between 0.4 and 1.1 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the brown and red algae and between 2.1 and 4.9 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the green algal species. At 0°C Pmax values of the brown and red algae ranged from 6.8 to 19.1 μmol O2 g?1 FW h?1 and were similarly high or higher than those of comparable Arctic-cold temperate species. Optimum temperatures for photosynthesis were 5 to 10°C in A. mirabilis, 10°C in H. grandifolius, 15°C in G. skottsbergii and 20°C or higher in D. anceps and I. cordata. P: R ratios strongly decreased in most brown and red algae with increasing temperatures due to different Q10 values for photosynthesis (1.4 to 2.5) and dark respiration (2.5 to 4.1). These features indicate considerable physiological adaptation to the prevailing low light conditions and temperatures of Antarctic waters. In this respect the lower depth distribution limits and the northern distribution boundaries of these species partly depend on the physiological properties described here.  相似文献   

6.
为探讨Zn、B配施对鸡血藤(Spatholobus suberectus)黄酮类化合物积累的影响,采用营养液叶面喷施,对其总黄酮含量、可溶性蛋白质和PAL活性的变化进行研究。结果表明,Zn、B配施的鸡血藤总黄酮含量、可溶性蛋白质含量、PAL活性增加,其中施用50 mg L–1 Zn SO4+10 mg L–1 Na_2B_4O_7·10H_2O鸡血藤的可溶性蛋白质含量最高,达0.89%;施用25 mg L–1Zn SO4+50 mg L–1 Na2B4O7·10H2O鸡血藤的总黄酮含量和PAL活性最高,分别为4.65%、29.47 U g–1min–1。因此,合理配施Zn、B能促进鸡血藤黄酮类化合物的积累。  相似文献   

7.
Soil microbial biomass C (Cmic) is a sensitive indicator of trends in organic matter dynamics in terrestrial ecosystems. This study was conducted to determine the effects of tropospheric CO2 or O3 enrichments and moisture variations on total soil organic C (Corg), mineralizable C fraction (CMin), Cmic, maintenance respiratory (qCO2) or Cmic death (qD) quotients, and their relationship with basal respiration (BR) rates and field respiration (FR) fluxes in wheat‐soybean agroecosystems. Wheat (Triticum aestivum L.) and soybean (Glycine max. L. Merr) plants were grown to maturity in 3‐m dia open‐top field chambers and exposed to charcoal‐filtered (CF) air at 350 μL CO2 L?1; CF air + 150 μL CO2 L?1; nonfiltered (NF) air + 35 nL O3 L?1; and NF air + 35 nL O3 L?1 + 150 μL CO2 L?1 at optimum (? 0.05 MPa) and restricted soil moisture (? 1.0 ± 0.05 MPa) regimes. The + 150 μL CO2 L?1 additions were 18 h d?1 and the + 35 nL O3 L?1 treatments were 7 h d?1 from April until late October. While Corg did not vary consistently, CMin, Cmic and Cmic fractions increased in soils under tropospheric CO2 enrichment (500 μL CO2 L?1) and decreased under high O3 exposures (55 ± 6 nL O3 L?1 for wheat; 60 ± 5 nL O3 L?1 for soybean) compared to the CF treatments (25 ± 5 nL O3 L?1). The qCO2 or qD quotients of Cmic were also significantly decreased in soils under high CO2 but increased under high O3 exposures compared to the CF control. The BR rates did not vary consistently but they were higher in well‐watered soils. The FR fluxes were lower under high O3 exposures compared to soils under the CF control. An increase in Cmic or Cmic fractions and decrease in qCO2 or qD observed under high CO2 treatment suggest that these soils were acting as C sinks whereas, reductions in Cmic or Cmic fractions and increase in qCO2 or qD in soils under elevated tropospheric O3 exposures suggest the soils were serving as a source of CO2.  相似文献   

8.
The median lethal copper (Cu) concentration (96 hr-LC50) values for acute Cu toxicity for Tilapia sparrmanii (live mass: 30 ± 8g) in Mooi River hard water of dolomitic origin at 20 °C, pH 7.9, was 68.1 μmol l?1. At this 96 hr-LC50 value the specific oxygen consumption rate (∈ O2) decreased by 44.2 (± 2.1) % from a non-exposed value of 6.6 (±0.32) mmol O2 kg?1 hr?1 to 3.63 (±0.23) mmol O2 kg ?1 hr?1. At 46.4 μmol Cu l?1, 100% of the exposed T. sparrmanii were still alive after 96 hours, but the ∈ O2 decreased by a mean value of 1.65 (± 0.16) mmol O2 kg?1 fish hr?1 or 25% (± 2.4). Contrary to Pb and Cd, Cu as CuCl2 2H2O was not precipitated in hard water four days after it was dissolved. Thus T. sparrmanii and other cichlids are shown to be more than an order of magnitude more resistant to Cu as a toxicant than most salmonids.  相似文献   

9.
A strongly fluorescing 7-hydroxycoumarin (umbelliferone, U) oxidized in dilute (10 μmol/L-0, 1 mol/L) aqueous solution with CIO? or CIO? + H2O2 (but not with H2O2 alone) produces a strong chemiluminescence (CL). Light emission kinetics depends on the pH of solution (4.0–10.5) and the reaction has a low activation energy Ea = 31 ± 2 kJ/mol (285–310 K). The spectrum covers the fluorescence of umbelliferone (400–550 nm, λmax 460nm). No red emission typical of 1Δg, 1Σ+g (O2)2 is observed either in the umbelliferone +CIO? or the umbelliferone +CIO? + H2O2 solution. The possible mechanism of CL and concomitant degradative oxidation of umbelliferone is discussed.  相似文献   

10.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

11.
Photosynthesis and photoprotection in mangroves under field conditions   总被引:8,自引:2,他引:6  
Net CO2 exchange and in vivo chlorophyll fluorescence were studied in mangrove (Rhizophora stylosa) leaves at a field site in Western Australia, and leaf samples were collected for the analysis of enzymes and substrates potentially involved in anti-oxidant photoprotection. Photosynthesis saturated at 900 μmol quanta m?2 s?1 and at no more than 7.5 μmol CO2 m?2 s?1. However, fluorescence analysis indicated no chronic photoinhibition: Fv:Fm was 0.8 shortly after sunset, and quantum efficiencies of PSII were high up to 500 μmol quanta m?2 s?1. Electron flow through PSII was more than 3 times higher than electron consumption through Calvin cycle activity, however, even with photorespiration and temperature-dependent Rubisco specificities taken into account. Acknowledging the growing body of literature attributing a role to antioxidant systems in photoprotection, we also assayed the activities of superoxide dismutase (SOD) and several enzymes potentially involved in H2O2 metabolism. Their levels of maximal potential activity were compared with those in greenhouse-grown mangroves (R. mangle), and growth chamber-grown peas. Monodehydroascorbate reductase activities were similar in all species, and glutathione reductase was lower, and ascorbate peroxidase ~40% higher, in the mangroves. SOD activities in field-grown mangroves were more than 40 times those in peas. Our results support the hypothesis that O2 may be a significant sink for photochemically derived electrons under field conditions, and suggest an important role for O2? scavenging in photoprotection. However, when relative patterns are compared between species, imbalances between SOD and the other enzymes in the mangroves suggest that more components of the system (e.g. phenolics or peroxidases) are yet to be identified.  相似文献   

12.
Zhang  Yue  An  Yanhuang  Yang  Ning  Wang  Wei  Liu  Ruirui  Gao  Run  Zhou  Yaping 《Journal of Plant Growth Regulation》2022,41(3):1174-1186

Oridonin is a diterpenoid isolated from medicinal herb Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), which has an allelopathic effect on plants. Phospholipase C (PLC1) and hydrogen peroxide (H2O2) are involved in many biotic or abiotic stress responses. Using the 16-day-old seedlings of Arabidopsis thaliana ecotype (WT) and PLC1-deficient mutant (plc1) as materials (treated with 10 μM or 60 μM oridonin for 72 h), the effect of oridonin on root growth regulating by PLC1 and H2O2 was investigated. The results showed that the promoting of root growth was about 6.9% at 10 μmol L?1 oridonin and the inhibiting of root growth was about 19.73% at 60 μmol L?1 oridonin in WT, the inhibiting of root growth was about 10.5% and 41.2% at 10 mol L?1 and 60 mol L?1 oridonin, respectively, in plc1. The expression of ARR1, ARR12, and AHK3 was promoted at low concentrations of oridonin and inhibited at high concentrations in WT, whereas the expression of ARR1 and ARR12 was inhibited with the increase of oridonin concentration in plc1. This suggested that PLC1 was involved in the root growth regulation of oridonin. H2O2 was promoted by oridonin with concentration dependence pattern in root cells. Oridonin increased the activity of antioxidant enzymes in both WT and plc1, but the activity of antioxidant enzymes in plc1 was lower than WT. This indicated that PLC1 involved in the activation of antioxidant enzymes promoted by the oridonin. Exogenous CaCl2 facilitated the accumulation of H2O2 in both WT and plc1. And the H2O2 of WT was obviously higher than that of plc1. The root growth of WT was inhibited by CaCl2 with the increase of oridonin. However, there is no effect of CaCl2 on the root growth in plc1. This reflected that PLC1 positively involved in the regulation of Ca2+ on the H2O2 and the inhibition effect of Ca2+ on the root growth under oridonin treatment. PA promoted the H2O2 and suppressed the root growth under oridonin treatment in both WT and plc1. In plc1, PA facilitated the root growth with no oridonin and inhibited the root growth with the increase of oridonin. This reflected that PLC1 positively regulated the promotion effect of PA on the root growth under high oridonin treatment. PLC1 mediated oridonin (10 and 60 mol L?1) to regulate H2O2 levels in A. thaliana seedlings, thereby regulating root tip cell morphology and mitosis. These results demonstrated that PLC1 mediated the low-promotion and high-inhibition effect of oridonin on the root growth in A. thaliana by regulating the concentrations of Ca2+ and PA, and further affecting the intracellular H2O2 level.

  相似文献   

13.
ABSTRACT

The role of exogenous methyl jasmonate (MeJA) in alleviating drought stress was investigated on Huangguogan. Except for intercellular CO2 concentration, MeJA had little effect on net photosynthetic rate, stomatal conductance, and transpiration rate under drought stress. Compared with drought stress, MeJA significantly alleviated the decrease of chlorophyll content. However, chlorophyll a/b ratio was significantly increased. MeJA significantly increased proline and soluble sugar contents, significantly decreased the O2 and H2O2 levels, and increased SOD and POD activities. In addition, the MDA content of drought stress was the highest of all treatments. MeJA significantly reduced MDA content in drought-stressed Huangguogan leaves. Although the Ascorbic acid (AsA) contents of 500 and 1000 mg L?1 MeJA treatments were lower than that of 250 mg L?1 MeJA, but all concentration of MeJA treatments delayed the decline of AsA content. Therefore, MeJA could induce drought stress tolerance by increasing the osmotic adjustment substances and antioxidant activities.  相似文献   

14.
The chemical components and antioxidant activity of 16 Rehmannia glutinosa samples were investigated to reveal the high‐quality raw resource for pharmaceutical products. 22 main chemical components were detected with significant content differences (P<0.05). The contents of 14 substances reached the maximum in S1 sample such as catalpol (6.74 mg g?1), rehmaionoside A (1.93 mg g?1) and rehmannioside D (5.13 mg g?1). However, the content distribution of the other eight substances had no obvious change regulation. Three antioxidant evaluation methods commonly showed that S1 sample had strong antioxidant activity with a low IC50 value of 0.022 mg mL?1, a high ABTS value of 524.196 μmol equiv. Trolox g?1, and a high FRAP value of 200.517 μmol equiv. Trolox g?1. Considered the medicinal value, S1 had high quality based on the present phytochemical profiles and antioxidant activity. These results also indicated that the root extracts of R. glutinosa could become useful supplement for pharmaceutical products as new antioxidant agents.  相似文献   

15.
The paper evaluated the effects of Se application time and rate on physiological traits, grain Se content, and yield of winter wheat by field experiment. Se application significantly increased grain Se content and yield, and the increased amount treated with 20 and 30 mg Se?L?1 was the highest. At blooming–filling stage, Se application significantly increased grain Se content, but did not affect yield. Chlorophyll content was increased by Se application, and the increased amount at heading–blooming stage was higher than that in wheat leaves at the other stages. At four development stages, Se treatments (except for 10 mg Se?L?1 at jointing–heading stage) significantly decreased the rate of superoxide (O2 ?) radical production. At heading–blooming (except for 50 mg Se?L?1) and blooming–filling stages, hydrogen peroxide (H2O2) content was significantly decreased by Se treatments. The rate of O2 ? production and H2O2 content at 20 and 30 mg Se?L?1 was the lowest. Se treatments (except for 10 mg Se?L?1 at regreening–jointing and blooming–filling stages) also induced an evident decrease in malondialdehyde content. Proline content induced by Se treatments at jointing–heading and heading–blooming stages was higher than that in wheat leaves at regreening–jointing and blooming–filling stages. At four development stages, Se treatments all significantly increased glutathione peroxidase activity, and the treatments with 20 and 30 mg Se?L?1 also evidently increased reduced glutathione content. These results suggested that Se application at different development stages increased antioxidant capacity of wheat, reduced oxidant stress to some extent, and the effects of Se treatments was the best if Se concentration ranged between 20 and 30 mg Se?L?1. In addition, Se application time was more beneficial for Se accumulation and yield in wheat grain at heading–blooming stage.  相似文献   

16.
A highly sensitive and simple spectrofluorimetric method for the determination of tiopronin based on its inhibitory effect on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine was developed. The concentration of tiopronin is linear with decreased fluorescence (ΔF) of the system under the optimal experimental conditions. The calibration graph is linear in the range 1.23 × 10?8 to 3.06 × 10?5 mol L?1 with a detection limit of 6.13 × 10?9 mol L?1. The relative standard deviation was 4.38% for 11 determinations of 6.13 × 10?6 mol L?1. This method can be used for the determination of tiopronin in pharmaceuticals with satisfactory results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

18.
Based on the inhibition effect of methimazole (MMI) on the reaction of luminol–H2O2 catalyzed by gold nanoparticles, a novel chemiluminescence (CL) method was developed for the determination of MMI. Under the optimum conditions, the relative CL intensity was linearly related to MMI concentration in the range from 5.0 × 10?8 to 5.0 × 10?5 mol L?1. The detection limit was 1.6 × 10?8 mol L?1 (S/N = 3), and the RSD for 6.0 × 10?6 mol L?1 MMI was 4.83 (n = 11). This method has high sensitivity, wide linear range, inexpensive instrumentation and has been applied to detect MMI in pharmaceutical tablets and pig serum samples. Furthermore, a possible reaction mechanism is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

20.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号