首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.  相似文献   

2.
Aims: Bacterial biofilms generally are more resistant to stresses as compared with free planktonic cells. Therefore, the discovery of antimicrobial stress factors that have strong inhibitory effects on bacterial biofilm formation would have great impact on the food, personal care, and medical industries. Methods and Results: Salicylate‐based poly(anhydride esters) (PAE) have previously been shown to inhibit biofilm formation, possibly by affecting surface attachment. Our research evaluated the effect of salicylate‐based PAE on biofilm‐forming Salmonella enterica serovar Typhimurium. To remove factors associated with surface physical and chemical parameters, we utilized a strain that forms biofilms at the air–liquid interface. Surface properties can influence biofilm characteristics, so the lack of attachment to a solid surface eliminates those constraints. The results indicate that the salicylic acid‐based polymers do interfere with biofilm formation, as a clear difference was seen between bacterial strains that form biofilms at the air–liquid interface (top‐forming) and those that form at the surface–liquid interface (bottom‐forming). Conclusion: These results lead to the conclusion that the polymers may not interfere with attachment; rather, the polymers likely affect another mechanism essential for biofilm formation in Salmonella. Significance and Impact of the study: Biofilm formation can be prevented through controlled release of nature‐derived antimicrobials formulated into polymer systems.  相似文献   

3.
Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.  相似文献   

4.
The chamber is made with two pieces of clear Plexiglas, both 1 inch wide and 3 inches long; the top piece, 1/16 inch thick; the bottom, 1/4 inch. A recess 14 mm wide, 37 mm long and 5 mm deep is cut into the bottom piece leaving a margin 1.5 mm wide, this margin is then cut down to a height of 2.5 mm for the length of the recess; a piece of moistened filter paper I1/2 inches long and 5 mm deep is attached to the rear wall, leaving the bottom clear for the transmitted light; two notches 13 × 15 mm and 12 mm apart are cut from the top piece. The top is superimposed on the bottom and held by two screws to form a chamber that is accessible to microdissection instruments through its open side. Two cover glasses, one bearing the specimen and the other, the medium to which the transfer is to be made, are placed over the notches in the top (agar side down). The actual transfer of material is made by shifting the position of the cover glasses with the mechanical stage of the microscope while the specimen is held by the micromanipulator.  相似文献   

5.
The chamber is made with two pieces of clear Plexiglas, both 1 inch wide and 3 inches long; the top piece, 1/16 inch thick; the bottom, 1/4 inch. A recess 14 mm wide, 37 mm long and 5 mm deep is cut into the bottom piece leaving a margin 1.5 mm wide, this margin is then cut down to a height of 2.5 mm for the length of the recess; a piece of moistened filter paper I1/2 inches long and 5 mm deep is attached to the rear wall, leaving the bottom clear for the transmitted light; two notches 13 × 15 mm and 12 mm apart are cut from the top piece. The top is superimposed on the bottom and held by two screws to form a chamber that is accessible to microdissection instruments through its open side. Two cover glasses, one bearing the specimen and the other, the medium to which the transfer is to be made, are placed over the notches in the top (agar side down). The actual transfer of material is made by shifting the position of the cover glasses with the mechanical stage of the microscope while the specimen is held by the micromanipulator.  相似文献   

6.
金针菇是著名的食、药两用真菌。以45份金针菇品种为试验材料,对21个性状进行分级与评价,对12个数量性状进行分级,并对其中10个数量性状的相关性和2个数量性状的不同测量部位的影响进行了研究。结果表明:所有性状均适合作为DUS(特异性、一致性和稳定性)测试性状,12个数量性状可分别划分为3–5级;10个数量性状至少与1个其他数量性状显著相关;菌柄由上往下逐渐变粗,不同品种变粗程度略有差异,测量菌柄直径时要求测量菌柄上部1/3处;子实体数量由下往上逐渐减少,不同品种减少程度略有差异,测量子实体数量时要求测量单瓶中长度在基部1/3以上的子实体个数;形态性状的聚类分析结果支持将"菌落:表面色素"、"菌盖:纵切面形状"和"菌盖:表面颜色"作为分组性状。  相似文献   

7.
8.
小麦等C_3植物的叶片在光下经无CO_2或低CO_2气体处理后,通入高CO_2气体,光合强度出现“升、降、升”的波动,而玉米等C_4植物无此现象。不同植物的光合波动幅度不同。强光、高CO_2、低O_2等能缩短第一次光合上升时间,增大光合下降幅度;而低CO_2、高O_2等则减少光合下降幅度。此现象与RuBP及ATP的含量变化有关。  相似文献   

9.
A molecular simulation is developed to study the effect of surface nanostructures on nanoscale flows. Based on this method, particles equation of motion is solved through the Verlet algorithm. Meanwhile, a physically sound method is applied to control the momentum and temperature of the simulation box. By adding an external force on the top copper plate according to the velocity difference between on-the-fly and desired velocities, simulations on convection of argon flows between two solid walls are performed. The top wall, which holds a higher temperature, moves at a constant velocity relative to bottom one along with the streamwise direction. These simulation results show that the nanostructures particularly affect fluid density oscillations adjacent to solid wall and nanostructures. In addition, these nanostructures also have significant effects on temperature and velocity distributions in simulation system.  相似文献   

10.
The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification.  相似文献   

11.
The bacterial cell division protein FtsZ assembles into straight protofilaments, one subunit thick, in which subunits appear to be connected by identical bonds or interfaces. These bonds involve the top surface of one subunit making extensive contact with the bottom surface of the subunit above it. We have investigated this interface by site-directed mutagenesis. We found nine bottom and eight top mutants that were unable to function for cell division. We had expected that some of the mutants might poison cell division substoichiometrically, but this was not found for any mutant. Eight of the bottom mutants exhibited dominant negative effects (reduced colony size) and four completely blocked colony formation, but this required expression of the mutant protein at four to five times the wild-type FtsZ level. Remarkably, the top mutants were even weaker, most showing no effect at the highest expression level. This suggests a directional assembly or treadmilling, where subunit addition is primarily to the bottom end of the protofilament. Selected pairs of top and bottom mutants showed no GTPase activity up to 10 to 20 microM, in contrast to the high GTPase activity of wild-type FtsZ above 1 muM. Overall, these results suggest that in order for a subunit to bind a protofilament at the 1 microM K(d) for elongation, it must have functional interfaces at both the top and bottom. This is inconsistent with the present model of the protofilament, as a simple stack of subunits one on top of the other, and may require a new structural model.  相似文献   

12.
《Luminescence》2003,18(2):79-89
We describe the engineering and product development of the chemiluminescent ZstatFlu®‐II Test kit for influenza diagnostics. The reaction vessel is a chemical implementation device with a polystyrene bottom chamber and a polypropylene top chamber that screw together. The patient's specimen is dispersed in a proprietary diluent and mixed inside the bottom chamber with the influenza viral neuraminidase‐specific substrate, 1,2‐dioxetane‐4,7‐dimethoxy‐Neu5Ac. Neuraminidase catalysis releases the dioxetane. The top chamber contains 40% NaOH and is sealed at the top with an ABS plastic plug‐crush pin assembly. The top chamber floor is 85% thinner at the centre, forming a frangible flap. An automated imaging device serves as an incubator for the chemical implementation devices and also facilitates the piercing of the flap by the crush pin. This action results in NaOH flushing into the bottom chamber, initiating chemiluminescence. The imaging device also exposes the Polaroid? high‐speed detector film to chemiluminescence. At the end of exposure, the film is automatically processed and ejected. Chemiluminescence from an influenza virus‐positive specimen produces a ‘+’‐shaped white image, archiving the diagnostic outcome. The modular ZstatFlu®‐II test kit components are easily adaptable for the chemiluminescent detection of a wide range of analytes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Concentric-tube airlift bioreactors   总被引:2,自引:0,他引:2  
Gas holdup investigations were performed in three concentric-tube airlift reactors of different scales of operation (RIMP: 0.070 m3; RIS-1: 2.5 m3; RIS-2: 5.2 m3; nominal volumes). The influences of the top and bottom clearances and the flow resistances at the downcomer entrance were studied using tap water as liquid phase and air as gaseous phase, at atmospheric pressure. It was found that the gas holdup in the individual zone of the reactor: riser, downcomer and gas-separator, as well as that in the overall reactor is affected by the analyzed geometrical parameters in different ways, depending on their effects on liquid circulation velocity. Gas holdup was satisfactorily correlated with Fr, Ga, bottom spatial ratio (B), top spatial ratio (T), gas separation ratio (Y) and downcomer flow resistance ratio (A d /A R ). Correlations are presented for gas holdup in riser, downcomer, gas separator and for the total gas holdup in the reactor. All the above stressed the importance of the geometry in dynamic behaviour of airlift reactors.  相似文献   

14.
Epithelial cells require adherence to a matrix for regular growth. During standard keratinocyte cell culture in serum-free medium, we observed that cell colonies formed not only on the bottom of the culture vessels but also at the medium/air interface. Coomassie blue staining detected a protein membrane that extended up to several centimeters between the colonies of floating cells. Ultrastructural investigation of this membrane revealed structures closely resembling those of basement membranes, and immunochemical staining confirmed the presence of laminins-1 and -5 as well as collagen IV, representative components of basement membranes. Cells attached to the floating membrane proliferated and could be cultivated for up to six months. When keratinocyte-conditioned medium was filtered and transferred to a culture vessel without cells, the protein membrane at the liquid/air interface formed within one week suggesting self-assembly of cell-released proteins. Our findings provide a basis for the production of epidermal basement membranes for potential medical uses.  相似文献   

15.
Sediment traps were placed in 29 small lakes in south and central Sweden at 2 m below the surface of the lakes and at 2 m above the lake bottom. Traps were exposed for approximately 120 days during the summer months before collection. Rates of sedimentation in both top and bottom traps were compared to 32 catchment, morphometric and water column parameters in an attempt to identify the processes which influence sediment accumulation. Using only lake water pH, maximum lake depth (Dmax) and lake surface area (Ao), 67% of the variance in the bottom trap sedimentation rates was explained. Only pH and Ao were useful predictors for the top traps. Using the bottom traps as a measure of gross sedimentation and the top traps as a measure of net sedimentation (plus periphyton growth in the traps), resuspension was separated from net sedimentation in the bottom traps. Resuspension calculated from these data is compared with more conventional methods of calculation.  相似文献   

16.
Microorganisms were continuously cultivated in multistage column consisting of ten perforated plate sections to which medium and air were supplied concurrently from the bottom. At steady state the cell concentration in the various stages was gradationally differentiated from the bottom to the top in the direction of medium flow. RNA content per unit cell concentration at each sage was determined. The cells in the lower stages were higher in RNA content than those from the upper stages. Wash out was observed to occur in the column at dilution rates which do not result in wash out in a single stage chemostat system. A study of the flow characteristics revealed that the overall performance of the plate column was equivalent to that of a multistage system, when hole diameter and hole area to column cross sectional area ratio were properly selected. This was true even in highly aerated conditions. These results indicated that the perforated plates in the column hindred intermixing through the plates, and that each stage functioned as an independent stirred vessel. Industrial and research application of this type fermentor was discussed.  相似文献   

17.
FITC-Albumin was injected into the circulation for estimating transport possibilities of blood microvessels and then investigating its maintenance near vessel wall with the help of the photometry. Velocity of albumin entrance into the interstitium and its top concentration near the wall of consecutive links of venules (20-60 mm) raised. Our data show that it may be caused by enhancing vessel surface and increasing its permeability for this protein.  相似文献   

18.
19.
This work presents results of study of a peculiar form of behavior of the sea stars Asterias rubens, which can be called transient from the unconditional-reflex reaction of the standing still to action of the an outside stimulus or unfavorable environment factor to the elaborated internal inhibition of the higher animals. The experiment was based on use of the biological peculiarity of behavior of sea stars (placed in a vessel)—a congenital reflex of movement to the water surface. At repeated meeting with the unfavorable action (the water surface desalting or a tapping on the upper rays), the sea star descends to the vessel bottom, is firmly attached with ambulacral feet to the vessel wall and stops rising to the surface. This state can be disinhibited by throwing the sea star onto the bottom. After a long training (for several experimental days) the sea stars begin to crawl on the bottom without ascending to the water surface. On destruction of the nervous system intactness (two rays with the madrepore plate were cut) the reflexes of the rise to the surface and escape of the unfavorable factors are preserved, but the active cessation of the rise does not appear. The observed phenomenon is similar to the elaboration of the reflex with negative reinforcement in the higher animals, at which there occurs inhibition of the congenital reaction that is inadequate under changed environment conditions. At present, neurophysiological mechanisms of elaboration of such “forbidden” inhibition are unknown.  相似文献   

20.
Cells exposed to dextran (Dx)-rich bottom phase prior to cell partitioning in Dx-poly(ethylene glycol) (PEG) aqueous two-phase systems have lower partition ratios than cells exposed to PEG-rich top phase. Aspects of this previously observed phenomenon were explored. In the present work charge-sensitive phases made with Dx T500 and PEG 8000 were used exclusively. It was found that: (1) even on countercurrent distribution (CCD) red cells (RBC) loaded in bottom phase have a lower apparent partition ratio, G, than the same cells loaded in top phase; (2) when part of the same cell population is loaded into top phase and part into bottom phase of the same load cavities for CCD, with the cells loaded into top or bottom bearing an isotopic tracer (51Cr), the cells loaded into top phase have a higher G value than the cells loaded into bottom phase; (3) the shift in the CCD curves of human or of rat RBC between cells loaded in top or bottom phase using systems having the same polymer concentration (though different salt compositions) shows no striking difference and is, for the number of experiments run, not statistically significant; (4) when the quantity of cells loaded for CCD is reduced from 10(9) to 10(8), the G value of cells loaded in top phase is reduced slightly while that of cells loaded in bottom phase is diminished more appreciably; (5) increasing polymer concentrations yield larger differences in G values between (rat) RBC loaded in top or bottom phase; (6) when cells exposed to top or bottom phase, respectively, are centrifuged and suspended in bottom or top phase, respectively, their CCD patterns are qualitatively similar to cells exposed to these latter respective phases initially; (7) rat RBC populations containing 59Fe-labeled cells of different but distinct age are fractionated on CCD irrespective of whether loaded in top or bottom phase. An exception are populations containing very young mature labeled cells (e.g., 4-d old) which are resolved when loaded in top phase but not in bottom phase. Thus cell populations exist which can be resolved by CCD when loaded in one of the phases but not when loaded in the other. Glutaraldehyde-fixed rat RBC containing 4-d old labeled cells are fractionated by CCD irrespective of whether loaded in top or bottom phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号