首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

2.
Recently, dental microwear analysis has been successfully employed to xenarthran teeth. Here, we present new data on use wear features on 16 molariforms of Orophodon hapaloides and Octodontotherium grande. These taxa count among the earliest sloths and are known from the Deseadan SALMA (late Oligocene). Modern phylogenetic analyses classify Octodontotherium and Orophodon within Mylodontoidea with whom they share lobate cheek teeth with an outer layer of cementum and a thick layer of orthodentine. Similar target areas of 100μm2 were analyzed on the orthodentine surface of each tooth by stereomicroscopic microwear and by SEM microwear. Results were unlike those of extant sloths (stereomicroscopic microwear: Bradypus, Choloepus) and published data from fossil sloths (SEM microwear: Acratocnus, Megalonyx, Megatherium, Thinobadistes); thus, both approaches independently indicate a different feeding ecology for the Oligocene taxa. The unique microwear results suggest that both taxa fed on plant material with low to moderate intrinsic toughness (foliage, twigs) but also proposes intake of tougher food items (e.g., seeds). Frequent gouging of the tooth surfaces can be explained by exogenous influence on microwear, such as possible intake of abrasive grit. We suggest an unspecialized herbivorous diet for Octodontotherium and Orophodon utilizing diverse food resources of their habitat. These interpretations support the reconstruction of (1) Deseadan environments as open habitats with spreading savannas/grasslands and (2) both taxa as wide-muzzled bulk feeders at ground level.  相似文献   

3.
A recent study of occlusal microwear in Australopithecus afarensis described this species as an opportunistic dweller, living in both forested and open environments and greatly relying on fallback resources and using fewer food-processing activities than previously suggested. In the present study, analysis of buccal microwear variability in a sample of A. afarensis specimens (n = 75 teeth) showed no significant correlations with the ecological shift that took place around 3.5 Ma in Africa. These results are consistent with the occlusal microwear data available. In fact, significant correlations between buccal and occlusal microwear variables were found. However, comparison of the buccal microwear patterns showed clear similarities between A. afarensis and those hominoid species living in somewhat open environments, especially the Cameroon gorillas. A diet based mainly on succulent fruits and seasonal fallback resources would be consistent with the buccal microwear patterns observed.  相似文献   

4.
Abstract

The study of dental wear was first used years ago to infer the palaeoecology of fossil mammals and in particular their diet. Results depend predominantly on the scale of the analysis used. Analyses of dental macrowear, mesowear or microwear do not provide the same type of dietary information, be it about the seasonal, annual or lifetime diet. This contribution focuses on emblematic species, cave bears (Ursidae), in particular Ursus spelaeus spelaeus. Methods used by previous researchers to infer their dietary preferences and thus their palaeoecology are reviewed and compared. This review is complemented by an analysis of several specimens of cave bears from the Goyet cave in Belgium, using dental microwear texture analysis (DMTA), a methodology widely applied for reconstructing palaeodiets. Three main conclusions are drawn here: (1) DMTA is the method that provides the most precise palaeobiological inferences; (2) during the pre-dormancy period, cave bears show dietary flexibility; (3) dental wear alone might be not sufficient to provide a complete reconstruction of the cave bear palaeodiet.  相似文献   

5.
Tooth microwear was analyzed for a large sample of wild-shot barren-ground caribou (Rangifer tarandus groenlandicus) from the Kaminuriak population of eastern Canada. This sample was compared to the microwear of specimens from three Pleistocene localities in North America (Alaska) and western Europe (Caune de l’Arago in France and Salzgitter in Germany). The results show that the extant samples from eastern Canada have seasonal variation in microwear and presumably in diet. The differences in microwear between the various seasons may reflect a cyclic migration of the population within a year. The extinct population from Alaska has extremely blunt teeth (mesowear), as blunt as those of modern zebras and bison. This observation is corroborated by the lowest number of microwear pits. The findings are untypical, as most typical caribou teeth have sharper apices, and we interpret this as an indication of a local habitat that was different with animals feeding on non-typical vegetation. The combination of Rangifer from Caune de l’Arago and Salzgitter reveals a pattern in microwear variability. The Salzgitter is interglacial and shows a greater diversity of browsing (broad spectrum on average number of pits) than the glacial Caune de l’Arago. The interglacial population from Salzgitter is interesting because it shows several different types of browsing. Collectively all the Rangifer teeth show that diet of a brachydont taxon can vary across most of the dietary morphospace of ungulates as represented by tooth microwear. The three Pleistocene samples exhibit microwear that is different from the extant population in question. This observation implies that the recent diet of Rangifer has changed from the typical caribou diet in the past. This indicates dietary change within a species. This is important because it represents dietary evolution without changes in tooth morphology.  相似文献   

6.
The utility of orthodentine microwear analysis as a proxy for dietary reconstruction in xenarthrans (tree sloths, armadillos) was quantitatively and statistically accessed via low‐magnification stereomicroscopy. Features such as number of scratches and pits, as well as presence of gouges, hypercoarse scratches, > four large pits, > four cross scratches, and fine, mixed or coarse scratch texture were recorded in 255 teeth from 20 extant xenarthran species. Feature patterns are consistent with scar formation through abrasional (tooth–food) and attritional (tooth–tooth) contact. Number of scratches is the most dietary diagnostic microwear variable for xenarthrans, with herbivorous sloths characterized by > ten scratches and nonherbivorous armadillos by < ten scratches. Discriminant function analysis differentiated arboreal folivores (sloths) and frugivore‐folivores (sloths) both from each other and from fossorial carnivore‐omnivores (armadillos) and insectivores (armadillos). Microwear patterns in carnivore‐omnivores and insectivores are difficult to distinguish between; armadillo microwear may reflect a fossorial lifestyle (grit consumption) rather than primary diet. Cabassous centralis is anomalous in its microwear signal relative to all other insectivores. To test the utility of orthodentine microwear analysis as an indicator of palaeodiet in extinct xenarthrans, microwear in the ground sloth Nothrotheriops shastensis was quantitatively and statistically compared to microwear in extant taxa. Microwear patterns in N. shastensis are most comparable to extant folivores based on scratch number and hierarchical cluster analysis. This strongly supports an herbivorous diet for N. shastensis that is corroborated by multiple independent lines of evidence. Thus, orthodentine microwear analysis can be used to reconstruct diet in extinct xenarthrans. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 201–222.  相似文献   

7.
Dental microwear analyses have raised new hopes and questions for functional morphologists. One hope is that analyses will allow insights into subtle dietary differences of extinct species. One major question is whether seasonal and/or habitat differences in dental microwear are reliably detectable. The extensive collections of Cebus nigrivittatus obtained by the Smithsonian Venezuelan Project allowed us to examine seasonal and habitat differences in dental microwear. Specimens were collected from three distinct ecological life zones that are distinguished by both the amount of rainfall and its seasonability. Environmental variation is generally correlated with variation in resource availability which, in C. nigrivittatus, affects diet. Published field studies indicate that these animals depend more on dry hard fruit and chitinous invertebrates during drier times and succulent fruits and caterpillars during wetter times of the year. As in previous microwear analyses, epoxy replicas were prepared from dental impressions, and the replicas were examined under a scanning electron microscope. Two micrographs were taken of facet 9 on M2 of each specimen. Mean values for the proportion of pits (vs. scratches), pit wdith, and scratch width were computed for each of 62 individuals and compared between ecological zones and collecting dates by using a multiple comparison test. Results indicate that, while seasonal differences in molar microwear in C. nigrivittatus are perhaps reliably detectable, 1) they are small in magnitude, 2) they are only detectable in certain ecological life zones, and 3) they are not of the order of magnitude that will obscure major interspecific differences in molar microwear such as those between C. apella and C. nigrivittatus.  相似文献   

8.
Recent studies of dental microwear and craniofacial mechanics have yielded contradictory interpretations regarding the feeding ecology and adaptations of Australopithecus africanus. As part of this debate, the methods used in the mechanical studies have been criticized. In particular, it has been claimed that finite element analysis has been poorly applied to this research question. This paper responds to some of these mechanical criticisms, highlights limitations of dental microwear analysis, and identifies avenues of future research.  相似文献   

9.
Dental microwear of ten wild-shot chacma baboons (Papio urinus) form Northwest and Northern Privinces, South Africa was examined by scanning electron microscopy. All specimens were collected during the dry season, during which these primates exploit hypogeous (underground) food items, including tubers and corms. The microwear fabric of thisP. ursinus sample is characterized by high pitting frequencies and large microwear features. It differs significantly from those displayed by other terrestrially foraging papionins of the genusTheropithecus. Exogenous grit is hypothesized to be largely responsible for the observedP. ursinus wear pattern, which resembles the microwear profiles of durophagous primates. It is suggested that large microwear features and a high incidence of enamel pitting, which are generally held to represent a microwear “signature” of durophagy, may not always be indicative of hard-object feeding in anthropoid primates.  相似文献   

10.
Dental microwear formation on the posterior dentition is largely attributed to an organism's diet. However, some have suggested that dietary and environmental abrasives contribute more to the formation process than food, calling into question the applicability of dental microwear to the reconstruction of diet in the fossil record. Creating microwear under controlled conditions would benefit this debate, but requires accurately replicating the oral environment. This study tests the applicability of Artificial Resynthesis Technology (ART 5) to create microwear textures while mitigating the challenges of past research. ART 5 is a simulator that replicates the chewing cycle, responds to changes in food texture, and simulates the actions of the oral cavity. Surgically extracted, occluding pairs of third molars (n = 2 pairs) were used in two chewing experiments: one with dried beef and another with sand added to the dried beef. High-resolution molds were taken at 0, 50, 100, 2500, and 5000 simulated chewing cycles, which equates to approximately 1 week of chewing. Preliminary results show that ART 5 produces microwear textures. Meat alone may produce enamel prism rod exposure at 5000 cycles, although attrition cannot be ruled out. Meat with sand accelerates the wear formation process, with enamel prism rods quickly obliterated and “pit-and-scratch” microwear forming at approximately 2500 cycles. Future work with ART 5 will incorporate a more thorough experimental protocol with improved controls, pH of the simulated oral environment, and grit measurements; however, these results indicate the potential of ART 5 in untangling the complex variables of dental microwear formation.  相似文献   

11.

Background

Dental microwear analyses are commonly used to deduce the diet of extinct mammals. Conventional methods rely on the user identifying features within a 2D image. However, recent interdisciplinary research has lead to the development of an advanced methodology that is free of observer error, based on the automated quantification of 3D surfaces by combining confocal microscopy with scale-sensitive fractal analysis. This method has already proved to be very efficient in detecting dietary differences between species. Focusing on a finer, intra-specific scale of analysis, the aim of this study is to test this method''s ability to track such differences between individuals from a single population.

Methodology/Principal Findings

For the purposes of this study, the 3D molar microwear of 78 individuals from a well-known population of extant roe deer (Capreolus caprelous) is quantified. Multivariate statistical analyses indicate significant seasonal and sexual differences in individual dental microwear design. These are probably the consequence of seasonal variations in fruit, seed and leaf availability, as well as differences in feeding preference between males and females due to distinct energy requirements during periods of rutting, gestation or giving birth. Nevertheless, further investigations using two-block Partial Least-Squares analysis show no strong relationship between individual stomach contents and microwear texture. This is an expected result, assuming that stomach contents are composed of food items ingested during the last few hours whereas dental microwear texture records the physical properties of items eaten over periods of days or weeks.

Conclusions/Significance

Microwear 3D scale-sensitive fractal analysis does detect differences in diet ranging from the inter-feeding styles scale to the intra-population between-season and between-sex scales. It is therefore a possible tool, to be used with caution, in the further exploration of the feeding biology and ecology of extinct mammals.  相似文献   

12.
在古食性研究中,牙齿微痕是指动物在咀嚼食物的过程中在牙齿咬合面上产生的微观磨损痕迹。不同食性的动物具有不同的牙齿微痕特征,因此可以通过研究牙齿微痕特征来重建灭绝动物的古食性,为探讨动物演化和古生态环境变化提供重要信息。本文主要介绍牙齿微痕作为一种简单而高效的古食性重建方法在古生物领域中的应用。本文主要内容包括牙齿微痕的发展历史,形成机理与应用,以及近年来被广泛应用的牙齿微痕定量化分析——表面纹理分析法,并在最后浅谈了牙齿微痕研究未来可能研究的方向。  相似文献   

13.
Food consumption causes distinct microwear patterns on teeth, especially in mammals that actively masticate food. Here we perform a microwear analysis to assess the relationships between diet and microwear features of diverse Carnivora. Our database includes approximately 230 individuals of 17 extant species having different diets. We analyse both slicing and grinding facets of M1 and m1. The proposed method is reproducible and allows the differentiation, especially on slicing facets, of microwear poles that are significantly distinct from one another. In carnivorans, the microwear features mainly result from their foraging behavior and the proportion of certain food items consumed. We applied our method to extinct taxa such as the amphicyonid Amphicyon major. The results on the m1 slicing facet indicate dietary similarities between this large Miocene predator and the extant red fox; results from the m1 grinding facet do not have equivalent in extant taxa, however.  相似文献   

14.
The objective of this study is to estimate changes in feeding preferences of the proboscidean species Gomphotherium subtapiroideum (Schlesinger 1917) by means of dental microwear analyses. The dietary changes are first evaluated through the ontogeny of this species, between juveniles and adults, and are then studied through geological time, from early Middle Miocene (MN5) to middle Late Miocene (MN8–9) localities of the German Molasse Basin. The microwear patterns of juvenile and adult individuals of G. subtapiroideum from Sandelzhausen (MN5) differ merely by the variable “length of scratches”, emphasizing longer jaw movements during mastication in adults. The microwear signatures of G. subtapiroideum do not vary significantly between the two geological time periods studied, but reflect mixed feeding preferences in both cases. These results imply that, despite an important environmental change at that time (drying and opening), the ecology of G. subtapiroideum and, especially, its feeding habits were not affected. Its dental microwear pattern is then compared with those of other species of Proboscidea from the Middle-Late Miocene of Germany, namely Deinotherium giganteum and Gomphotherium steinheimense.  相似文献   

15.
Makapansgat Limeworks Cave is a well-known Australopithecus africanus bearing locality that has spawned a considerable amount of paleoecological research because of its hominin component. Most recently, the paleoecology of this Plio-Pleistocene site has been studied by determining the diet and habitat of other extinct taxa, particularly the bovids. The diets of seven bovids (Aepyceros sp., Gazella vanhoepeni, Makapania broomi, Parmularius braini, Redunca darti, Tragelaphus sp. aff. T. angasii, and Tragelaphus pricei) have now been classified using taxonomic uniformitarianism, ecomorphology, stable carbon isotopes, and mesowear analysis. Here, dental microwear is applied to the same bovids for additional comparison and to further elucidate the strengths and weaknesses of each method. The different dietary proxy methods noted provide a temporal continuum, with genetic signals such as ecomorphology and taxonomic uniformitarianism indicating behavioral adaptations over geologic time, while nongenetic data such as stable carbon isotopes and mesowear reflect different aspects of average diet over extended portions of an animal's life, and dental microwear provides dietary snapshots.Microwear separated an extant baseline of ten bovid species into expected dietary categories and the Makapansgat bovids clearly fell into two groups with the same degree of separation as between extant grazers and browsers. The results indicate that a multidisciplinary approach produces a more accurate and robust reconstruction of past diets. In sum, the microwear analysis is in-line with the isotope and mesowear results, which suggest a stronger browsing component than either taxonomic uniformitarianism or ecomorphology imply.  相似文献   

16.
Many researchers have suggested that Australopithecus anamensis and Australopithecus afarensis were among the earliest hominins to have diets that included hard, brittle items. Here we examine dental microwear textures of these hominins for evidence of this. The molars of three Au. anamensis and 19 Au. afarensis specimens examined preserve unobscured antemortem microwear. Microwear textures of these individuals closely resemble those of Paranthropus boisei, having lower complexity values than Australopithecus africanus and especially Paranthropus robustus. The microwear texture complexity values for Au. anamensis and Au. afarensis are similar to those of the grass-eating Theropithecus gelada and folivorous Alouatta palliata and Trachypithecus cristatus. This implies that these Au. anamensis and Au. afarensis individuals did not have diets dominated by hard, brittle foods shortly before their deaths. On the other hand, microwear texture anisotropy values for these taxa are lower on average than those of Theropithecus, Alouatta or Trachypithecus. This suggests that the fossil taxa did not have diets dominated by tough foods either, or if they did that directions of tooth–tooth movement were less constrained than in higher cusped and sharper crested extant primate grass eaters and folivores.  相似文献   

17.
The Xenarthra represents an enigmatic clade of placental mammals that includes living tree sloths, armadillos, and their extinct relatives, yet certain aspects of the biology of this group remains poorly understood. Here, we use scanning electron microscopy to test the hypothesis that orthodentine microwear patterns in extant xenarthrans are significantly different among different dietary groups. In a blind analysis, microwear patterns were quantified at a magnification of 500× by two independent observers for extant species from four dietary groups (carnivore–omnivores, folivores, frugivore–folivores, and insectivores). Independent observers recovered the same relative between‐group differences in microwear patterns. Insectivores and folivores have a significantly lower numbers of scratches and greater scar widths than frugivore–folivores and carnivore–omnivores, yet we were neither able to statistically distinguish insectivores from folivores, nor differentiate frugivore–folivores from carnivore–omnivores. Nevertheless, a clear distinction exists between taxa from the same trophic level and habitat, which suggests that orthodentine microwear reflects niche partitioning and habitat more than diet among related forms. We suggest that bite force and chewing mechanics have a strong influence on the formation of orthodentine microwear, which may explain some of the observed overlap between distinct groups (e.g. frugivore–folivores versus carnivore–omnivores). This study serves as a positive step forwards in our understanding of the ecological role of living xenarthrans, and serves as a foundation for using orthodentine microwear to reconstruct palaeoecology in extinct ground sloths, glyptodonts, and pampatheres. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

18.
Here we compare dental microwear textures from specimens of the fossil genus Mesopithecus (Cercopithecidae, Colobinae) from the late Miocene of Eastern Europe with dental microwear textures from four extant primate species with known dietary differences. Results indicate that the dental microwear textures of Mesopithecus differ from those of extant leaf eaters Alouatta palliata and Trachypithecus cristatus and instead resemble more closely those of the occasional hard-object feeders Cebus apella and Lophocebus albigena. Microwear texture data presented here in combination with results from previous analyses suggest that Mesopithecus was a widespread, opportunistic feeder that often consumed hard seeds. These data are consistent with the hypothesis that early colobines may have preferred hard seeds to leaves.  相似文献   

19.
The mandibular third premolar (P3) of Australopithecus afarensis is notable for extensive morphological variability (e.g., metaconid presence/absence, closure of the anterior fovea, root number) and temporal trends in crown length and shape change over its 700 Ka time range. Hominins preceding A. afarensis have unicuspid, mesiodistally elongated P3s with smaller talonids, and subsequent australopiths have bicuspid, more symmetrically-shaped P3 crowns with expanded talonids. For these features, A. afarensis is intermediate and, thus, evinces the incipient stages of P3 molarization. Here, we examine A. afarensis P3 Phase II microwear and compare it with that of Australopithecus africanus and Cercocebus atys, an extant hard-object specialist, to assess whether the role of the P3 in food processing changed over time in A. afarensis. Premolar Phase II microwear textures are also compared with those of the molars to look for evidence of functional differentiation along the tooth row (i.e., that foods with different mechanical properties were processed by separate regions of the postcanine battery). Microwear textures were also examined along the mesial protoconid crest, the site of occlusion with the maxillary canine, of the A. afarensis P3 and compared with the same region in Pan troglodytes to determine whether microwear can be useful for identifying changes in the occlusal relationship between the P3 and maxillary canine in early Australopithecus. Finally, temporal trends in P3 Phase II and mesial microwear are considered. Results indicate that 1) both the P3 and molar Phase II facets of A. afarensis have less complex microwear textures than in A. africanus or C. atys; 2) A. afarensis P3 and molar Phase II textures differ, though not to the extent seen in taxa that eat hard and tough items; 3) microwear along the A. afarensis mesial protoconid crest is clearly distinct from that of the P. troglodytes, indicating that there is no honing equivalent in A. afarensis; and 4) there is little evidence of change over time in A. afarensis P3 microwear on either the mesial or Phase II facet. In sum, these results provide no evidence that A. afarensis routinely loaded either its premolars or molars to process hard objects or that A. afarensis P3 function changed over time.  相似文献   

20.
The extensive early Pliocene mammalian assemblages at Langebaanweg hold the potential to provide important information about paleoenvironments of the southwestern tip of Africa, an area that today consititutes the Fynbos Biome. We here add to a growing body of literature on the paleoenviornments of the site with an examination of dental microwear textures of bovids from the Varswater Formation. Microwear texture analysis is a new, automated and repeatable approach that measures whole surfaces in three dimensions without observer error. A study of extant ruminants indicates that grazers have more anisotropic microwear surface textures, whereas browsers have more complex microwear surface textures. Fossil bovids recovered from the Muishond Fontein Pelletal Phosphorite Member vary in their microwear textures, with some taxa falling within the extant browser range, some closer to extant grazers, and others in between. These results are consistent with scenarios suggesting mosaic habitats including fynbos vegetation, some (probably C3) grasses, and woodland elements when these fossils were accumulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号