首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5 and one 3, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.  相似文献   

2.
A. F. MacRae  M. T. Clegg 《Genetica》1992,86(1-3):55-66
We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.  相似文献   

3.
Summary Combining ability studies with respect to such green fodder quality characteristics as oxalic acid, calcium, sodium, potassium and green fodder yield were carried out in a 12 × 12 diallel cross set in pearl millet (Pennisetum typhoides (Burm) S. & H.). With regard to differential expression of gene effects, studies for quality traits were carried out in different seasons and on different plant parts. The relative proportions of general and specific combining variances indicated the preponderance of non-additive genetic variance. Parents possessing desirable fodder quality characteristics were identified on the basis of combining ability and per se performance, and selection criterion for crosses was discussed. It was recommended that leaf portion should be biochemically analysed and manipulated in an environment when the genes are expressed.Part of the Ph. D. dissertation submitted to the Punjab Agricultural University by the senior author in partial fulfilment of the requirements for the degree  相似文献   

4.
Miniature-inverted repeat transposable elements (MITEs) are abundantly repeated in plant genomes and are especially found in genic regions where they could contribute regulatory elements for gene expression. We describe with molecular and cytological tools the first MITE family reported in pearl millet: Tuareg. It was initially detected in the pearl millet ortholog of Teosinte-branched1, an important developmental gene involved in the domestication of maize. The Tuareg family was amplified recently in the pearl millet genome and elements were found more abundant in wild than in domesticated plants. We found that they shared similarity in their terminal repeats with the previously described mPIF MITEs and that they are also present in other Pennisetum species, in maize and more distantly related grasses. The Tuareg family may be part of MITEs activated by PIF-like transposases and it could have been mobile since pearl millet domestication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. O. Robin contributed the FISH and fiber-FISH hybridizations.  相似文献   

5.
Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI) transgene under control of the maize ubiquitin constitutive promoter were obtained using the transformation system described here. Proliferating immature zygotic embryos were used as target tissue for bombardment using a particle inflow gun. Different culture and selection strategies were assessed in order to obtain an optimised mannose selection protocol. Stable integration of the manA gene into the genome of pearl millet was confirmed by PCR and Southern blot analysis. Stable integration of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2 progeny of two independent transformation events with no more than four to ten copies of the transgene. Similar to results obtained from previous studies with maize and wheat, the manA gene was shown to be a superior selectable marker gene for improving transformation efficiencies when compared to antibiotic or herbicide selectable marker genes.Abbreviations 2,4-D: 2,4-Diclorophenoxyacetic acid - IAA: Indole acetic acid - ICRISAT: International Crops Research Institute for the Semi-Arid Tropics - IZEs Immature zygotic embryos Communicated by H. Lörz  相似文献   

6.
Role of alternative respiration, a thermogenic pathway, was evaluated in temperature rise of water stressed plants. Transpiration rate, plant temperature and respiratory dynamics were monitored in field grown irrigated and unirrigated sorghum(Sorghum vulgare Pers.) hybrid CSH 6 and pearl millet(Pennirelum typhoider (Burm. f.) Stapt and Hubbard) var. J 104 for 22 days. Transpiration rate of irrigated plants was always higher than the unirrigated plants. But the plant temperature and the alternative respiration activity of irrigated plants was always lower than unirrigated plants. The reduction in transpiration rate of unirrigated pearl millet was more as compared to unirrigated sorghum. Nonetheless, alternative respiration activity was higher in unirrigated sorghum as compared to unirrigated pearl millet. Temperature of unirrigated sorghum plants increased by 10.4°C during 22 days and it was 8.0°C higher than irrigated sorghum at day 22. Stressed pearl millet showed an increase of 3.9°C during 22 days and it was 2.9°C higher than the irrigated pearl millet at day 22. It is suggested that the heat released because of the alternative respiration activity also contributes towards temperature rise of water stressed plants.  相似文献   

7.
The cDNA encoding the antifungal protein AFP from the mould Aspergillus giganteus was introduced into two pearl millet (Pennisetum glaucum) genotypes by particle bombardment. Stable integration and expression of the afp gene was confirmed in two independent transgenic T0 plants and their progeny using Southern blot and RT-PCR analysis. In vitro infection of detached leaves and in vivo inoculation of whole plants with the basidomycete Puccinia substriata, the causal agent of rust disease, and the oomycete Sclerospora graminicola, causal agent of downy mildew, resulted in a significant reduction of disease symptoms in comparison to wild type control plants. The disease resistance of pearl millet was increased by up to 90% when infected with two diverse, economically important pathogens. This is the first report of genetic enhancement of Pennisetum glaucum against fungal infections.  相似文献   

8.
Summary Three flint and three dent maize (Zea mays L.) inbred lines, their possible F1 crosses, F2 and backcross progenies, and all possible three-way crosses were evaluated in a three-year experiment for yield, ear moisture, and plant height. The purpose was to estimate genetic parameters in European breeding materials from (i) generation means analysis, (ii) diallel analysis of generation means, and (iii) analysis of F1 and three-way cross hybrids. Method (i) was based on the F-metric model and methods (ii) and (iii) on the Eberhart-Gardner (1966) genetic model; both models extended for heterotic maternal effects.Differences among generation means for yield and plant height were mainly attributable to dominance effects. Epistatic effects were significantly different from zero in a few crosses and considerably reduced heterosis in both traits. Additive x additive and domiance x dominance effects for yield were consistently positive and negative, respectively. Significant maternal effects were established to the advantage of generations with a heterozygous seed parent. In the diallel analysis, mean squares for dominance effects were greater than for additive effects for yield and plant height but smaller for ear moisture. Though significant for yield and plant height, epistatic variation was small compared to additive and dominance variation. Estimates of additive x additive epistasis for yield were significantly negative in 11 of 15 crosses, suggesting that advantageous gene combinations in the lines had been disrupted by recombination in the segregating generations. The analysis of hybrids supported the above findings regarding the analysis of variance. However, the estimates of additive x additive epistasis for yield were considerably smaller and only minimally correlated with those from the diallel analysis. Use of noninbred materials as opposed to materials with different levels of inbreeding is considered the main reason for the discrepancies in the results.  相似文献   

9.
The cytosine DNA methylation and demethylation have a role in regulating plant responses to the environment by affecting the promoter regions of most plant defense-related genes through the CpG islands or the CCGG motifs. Salicylic acid, a defense and signaling plant hormone, is seen playing crucial role in the variation of the methylome. In this study, the effects of salicylic acid and feeding of the millet headminer (Heliocheilus albipunctella de Joannis) on pearl millet DNA methylome changes were evaluated through MSAP epigenotyping during panicle development. The results showed that millet headminer feeding increased the level of genomic methylation while application of salicylic acid caused DNA demethylation occurring mostly at external cytosine and accompanied by a decrease of the number of larvae per panicle. This suggests that hemimethylation (external cytosine methylation) has key role in regulating defense responses and conferring tolerance to pearl millet through salicylic acid application.  相似文献   

10.
Chemotropic responses by pearl millet pollen tubes   总被引:6,自引:0,他引:6  
Summary The possible existence of a chemotropic factor controlling pearl millet pollen-tube directionality within the ovary was investigated using three approaches: cytochemical analysis of water-soluble components at the micropyle, in vitro testing of various chemicals for chemotropic activity, and an attempt to isolate and characterize an ovarian chemotropic factor. Observations of pollinated pearl millet ovaries by fluorescence microscopy revealed that pollen tubes enroute to the embryo sac exhibit specific directional turns in the regions of the style base/ovary juncture, the basal placenta, and the micropyle. The placenta and the micropylar regions have water-soluble periodic acid Schiff positive-substances as well as protein; this extracellular material and the walls of the micropylar nucellar cells appear to have associated calcium (Chaubal and Reger 1991). In vitro assays of pollen-tube behavior in response to a range of external stimuli revealed that pearl millet pollen tubes exhibit directional turns in response to: (1) diffusate from excised pistil tissues; (2) glucose, but not to several other carbohydrates; (3) calcium (unwashed polygalacturonic acid-calcium gel); (4) an ovarian water soluble, low molecular weight, acidic protein. These results which apparently suggest the presence of at least three different potential chemotropic factors in pearl millet ovaries are discussed in relation to angiosperm chemotropism in general and the difficulties involved in the search for possible in vivo chemotropic factors.On Specific Cooperative Agreement 58-43YK-8-0026 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA  相似文献   

11.
Pearl millet [Pennisetum glaucum (L.) R. Br.] has the seventh largest annual production in the world giving it significant economic importance. Although generally well adapted to the growing conditions in arid and semi-arid regions, major constraints to yields are susceptibility to downy mildew disease caused by the oomycete Sclerospora graminicola (Sacc.) Schroet. Induction of resistance against downy mildew disease of pearl millet has been well established using various biotic and abiotic inducers. The present study demonstrated the comparative analysis of the involvement of the important defence enzymes like β-1,3-Glucanase, chitinase, phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and lipoxygenase (LOX) during induced systemic resistance (ISR) mediated by inducers like Benzo(1,2,3)-thiadiazole-7-carbothionic acid-S-methyl ester (BTH), Beta amino butyric acid (BABA), Chitosan and Cerebroside against pearl millet downy mildew disease. Native-PAGE showed six POX isozymes in all categories of uninoculated pearl millet seedlings and maximum intensity of bands was noticed in resistant seedlings. After inoculation in Cerebroside-treated seedlings, there were seven isoforms, POX-4 was not present in any other seedlings. Native-PAGE analysis showed the presence of five PPO isozymes in all categories of uninoculated pearl millet seedlings and after inoculation seven isoforms of PPO-7 were noticed, and the intensity of banding was more in resistant and Cerebroside-treated seedlings. The isoforms PPO-3 were present as an extra band after inoculation in all seedlings. Isoform PPO-7, though found in all seedlings, was very prominent in Chitosan- and Cerebroside-treated seedlings. β-1,3-Glucanase Native-PAGE analysis showed the presence of only one isozyme in all categories of uninoculated/inoculated pearl millet seedlings. Glu-1 isozyme was very prominent in all seedlings including resistant and susceptible seedlings. Among the induced resistant seedlings, highest intensity was observed in Cerebroside-treated seedlings. Native-PAGE analysis showed the presence of three LOX isozymes in all categories of uninoculated pearl millet seedlings, and the intensity of banding pattern was very low in BTH-treated seedlings. LOX-1 and LOX-2 were very prominent in resistant, Chitosan- and Cerebroside-treated seedlings. Upon inoculation, one extra band, LOX-3, was exclusively noticed in Cerebroside-treated seedlings. In inoculated seedlings, LOX-1, LOX-2 and LOX-4 were very prominent in Chitosan Cerebroside-treated seedlings compared to other seedlings.  相似文献   

12.
In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of Trichoderma viride with extracts of pearl millet. We have identified several proteins with antifungal properties in the seeds of pearl millet. One of these proteins has been purified to homogeneity and characterized. The purified protein has a molecular mass of 25 kDa. The N-terminal sequence of the protein (25 residues) shows homology to non-specific lipid transfer proteins (LTPs) of cotton, wheat and barley. The purified LTP inhibited mycelial growth of T. viride and the rice sheath blight fungus, Rhizoctonia solani in vitro.  相似文献   

13.
Summary Germ plasm from the A-genome of Pennisetum purpureum Schum. (AABB) of the secondary gene pool was transferred to cultivated pearl millet (AA) [P. glaucum (L.) R. Br.] by pollinating cytoplasmicnuclear male-sterile (cms) pearl millet with fertile allohexaploid pearl millet x P. purpureum hybrids (AAAABB). Certain allohexaploids used as pollinators on cms pearl millet resulted in 14-chromosome diploid pearl millet progenies. Three types of diploid pearl millet plants were produced in addition to the expected 28-chromosome AAAB-genome plants: (1) cms plants with only the A-genome, (2) cms plants with the A- and A-genomes, and (3) fertile plants with the A- and A-genomes. The latter group has allowed the utilization of genes for fertility restoration, stiff stalk, maturity, height, and morphological characteristics from the A-genome of P. purpureum in the pearl millet breeding program. Production of monoploid gametes by the allohexaploids appeared to be genetically controlled.  相似文献   

14.
Summary Regression analyses on grain yield of 20 hybrid and 13 composite varieties of pearl millet (Pennisetum typhoides (Burm. S. & H.)) evaluated at 19 sites in India were performed to assess their relative stability and to compare different measures of environmental values. A large portion of the significant genotype X environment interactions was attributed to the non-linear component and deviations mean squares (Sdi 2) were a very important parameter for selection of stable varieties. The mean grain yield was positively associated with regression coefficients and deviations mean squares. The hybrids MH 31, MH 35, MH 36 and MH 62 and composite populations MP 16, MP 31 and MP 36 possessed general adaptability. The use of dependent, independent and near-independent measures of environmental values has been found to have little influence on the general interpretation of regression analysis in pearl millet.  相似文献   

15.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

16.
Autofluorescence of downy mildew resistant and susceptible cells of pearl millet seedlings undergoing hypersensitive reaction (HR) upon Sclerospora graminicola-inoculation and arachidonic acid (AA)-treatment was studied. Two-day-old seedlings of a highly resistant (IP 18296) and a highly susceptible (23D2B) genotype of pearl millet were either inoculated with zoospore suspension of S. graminicola or treated with AA for 24 h. The coleoptiles with hypersensitive necrotic spots were processed by the standard procedure, and the tissues were subjected to fluorescence microscopy. A differential accumulation of autofluor-escent compounds in resistant and susceptible pearl millet genotypes was observed with most accumulation occurring in resistant cells treated with AA. The variation in the degree of fluorescence and the spatial accumulation of autofluorescent compounds among the two inoculated/treated genotypes is discussed.  相似文献   

17.
Summary Combining ability studies with respect to grain quality characteristics viz., beta-Carotene, total carotenoids, protein content, 250-grain weight, grain hardness and grain yield were carried out from a 13x13 diallel cross set in pearl millet [Pennisetum typhoides (Burm S&H)].The parents versus hybrids comparison indicated significant heterosis for all the traits under study. In general the hybrids having higher grain yield had bold hard grains with more carotene but low protein content, although a few hybrids combined high yield with an average protein percentage. The relative proportions of the general and specific combining ability variances indicated predominance of non-additive genetic variance with respect to all the traits. The per se performance of parents provided a fairly good indication of their combining ability in most cases. Parents possessing desirable grain quality characteristics were identified. Breeding implications are discussed.Part of the Ph.D. dissertation submitted to the Punjab Agricultural University by the senior author in partial fulfilment of the requirements for the degree  相似文献   

18.
Cytogenetics of pearl millet   总被引:1,自引:0,他引:1  
Summary The somatic karyotype of pearl millet Pennisetum americanum (L.) Leeke. (2n = 14) has been studied in several cultivars, but few cytological markers have been discovered which could help in the easy identification of the chromosomes. Analysis of pachytene bivalents permits such identification but is feasible only in a few cultivars. Recently, several lines having telocentric chromosomes have been produced and classified but their potentialities as cytogenetic tools have yet to be explored. Some African populations of pearl millet carry B-chromosomes in their karyotype. Cytogenetics of B-chromosomes has been reported in great detail. Bs undergo spontaneous changes to produce deficient- and iso-chromosomes. The main effect of B-chromosomes is on chiasma frequency which is exerted by the relative amounts of chiasma promoting euchromatin and the chiasma depressing heterochromatin in the Bs. Haploid plants occur occasionally and sometimes show a low degree of seed set, offering a possibility of establishing homozygous inbred lines. Cytogenetics of several spontaneous and induced autotetraploids have been reported. In general quadrivalent formation between the seven sets of four homologues was random. Seed set of the autotetraploids could be improved by selection; improved seed fertility was found to be associated with increased chiasma frequency, increased quadrivalent frequency and regular distribution of chromosomes at anaphase I. Genes controlling morphological characters of plant phenotype segregate independent of those controlling fertility and in pearl millet polyploidy per se is not limiting to plant vigour. Primary trisomics represent the best studied among the aneuploids of pearl millet. All the seven primary trisomics have been identified and described. Some were used in assigning genes to specific chromosomes but in general trisomies have poor vigour and fertility, and show low frequency of transmission. Apart from B-chromosomes, cytogenetics of interchanges has been the best studied aspect of pearl millet. The frequency of co-orientation of an interchange complex at metaphase I, which determines the fertility or sterility of the interchange heterozygote, is influenced by the genetic background and thus is theoretically amenable for selection leading to improved fertility of the heterozygote. Interchange tester-stocks have been assembled which can be used to identify the chromosomes involved in any newly obtained interchange. A complex interchange line involving all the chromosomes of the complement has also been produced, but the ring-of-fourteen produces total male and female sterility.Genotypic control of mitosis and meiosis has been reported, with reference to chromosome numerical mosaicism, multiploid sporocytes, desynapsis and chromosome fragmentation, and male sterility. Pearl millet being a largely outbreeding species, forced inbreeding was mainly found to result in loss of morphological vigour and reduction in mean chiasma frequency per PMC. Interspecific hybrids between pearl millet and several related species have been cytologically investigated and homology of the seven chromosomes of pearl millet with seven of the fourteen chromosomes of P. purpureum has been demonstrated. Cytogenetic evidence from haploids, autopolyploids and interspecific hybrids has indications to suggest that the haploid number of x = 7 is derived from x = 5, but the evidence is inconclusive and needs critical evaluation.  相似文献   

19.
The inheritance of resistance to downy mildew disease and the defense-related enzymes β-1,3-glucanase and peroxidase was studied in crosses of pearl millet using a generation-mean analysis. The study material comprised six generations (susceptible and resistant parents, F1, F2, BC1 and BC2) in three crosses. Seedlings from these generations were inoculated with the downy mildew pathogen Sclerospora graminicola and disease incidence was recorded. Analysis of constitutive levels of β-1,3-glucanase and peroxidase in the seedlings of different generations indicated that the resistant populations showed higher enzyme activities, while lower activities of the enzymes were recorded in the susceptible populations. In the generation-mean analysis, the significance of scaling tests revealed the existence of non-allelic interactions in the inheritance of resistance to downy mildew as well as with the enzymes. Among the gene effects, both additive and dominant effects were significant. All the non-allelic interaction effects were significant in the crosses. Studies on the isozyme patterns of the enzymes substantiated the results of the disease-incidence experiments in most of the generations. The results indicated that the inheritance of downy mildew disease resistance and the expression of β-1,3-glucanase and peroxidase in pearl millet is not only under the control of additive and dominant genes but are also governed by complex non-allelic interactions. Received: 30 April 2000 / Accepted: 17 October 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号