首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farmland birds are of conservation concerns around the world. In China, conservation management has focused primarily on natural habitats, whereas little attention has been given to agricultural landscapes. Although agricultural land use is intensive in China, environmental heterogeneity can be highly variable in some regions due to variations in crop and noncrop elements within a landscape. We examined how noncrop heterogeneity, crop heterogeneity, and noncrop features (noncrop vegetation and water body such as open water) influenced species richness and abundance of all birds as well as three functional groups (woodland species, agricultural land species, and agricultural wetland species) in the paddy‐dominated landscapes of Erhai water basin situated in northwest Yunnan, China. Birds, crop, and noncrop vegetation surveys in twenty 1 km × 1 km landscape plots were conducted during the winter season (from 2014 to 2015). The results revealed that bird community compositions were best explained by amounts of noncrop vegetation and compositional heterogeneity of noncrop habitat (Shannon–Wiener index). Both variables also had a positive effect on richness and abundance of woodland species. Richness of agricultural wetland species increased with increasing areas of water bodies within the landscape plot. Richness of total species was also greater in the landscapes characterized by larger areas of water bodies, high proportion of noncrop vegetation, high compositional heterogeneity of noncrop habitat, or small field patches (high crop configurational heterogeneity). Crop compositional heterogeneity did not show significant effects neither on the whole community (all birds) nor on any of the three functional groups considered. These findings suggest that total bird diversity and some functional groups, especially woodland species, would benefit from increases in the proportion of noncrop features such as woody vegetation and water bodies as well as compositional heterogeneity of noncrop features within landscape.  相似文献   

2.
Windbreaks often form networks of forest habitats that improve connectivity and thus conserve biodiversity, but little is known of such effects in the tropics. We determined bird species richness and community composition in windbreaks composed of remnant native vegetation amongst tea plantations (natural windbreaks), and compared it with the surrounding primary forests. Fifty-one, ten-minute point counts were conducted in each habitat type over three days. Despite the limited sampling period, our bird inventories in both natural windbreaks and primary forests were nearly complete, as indicated by bootstrap true richness estimator. Bird species richness and abundance between primary forests and windbreaks were similar, however a difference in bird community composition was observed. Abundances of important functional groups such as frugivores and insectivores did not vary between habitat types but nectarivores were more abundant in windbreaks, potentially as a result of the use of windbreaks as traveling routes, foraging and nesting sites. This preliminary study suggests that natural windbreaks may be important habitats for the persistence of bird species in a production landscape. However, a better understanding of the required physical and compositional characteristics for windbreaks to sustain bird communities is needed for effective conservation management.  相似文献   

3.
European biodiversity has suffered from serious declines during the past few decades, with alterations of land use practices resulting in a loss of fine-scale habitat heterogeneity being a dominant driver. This heterogeneity was maintained by extensive landscape management, which has gradually been replaced by either intensive exploitation or land abandonment. It has been suggested that military training can generate habitat heterogeneity that may support the existence of species of conservation concern, but studies rigorously testing the real importance of military training areas for biodiversity are lacking. Here we address this issue by analyses of two datasets. First, we compared land cover classes between all large military training areas (MTAs) and surrounding control areas (CAs) of the same size in the Czech Republic using multivariate redundancy analysis. We found that the difference in land cover between MTAs and CAs was significant and represented the strongest gradient in land cover classes: from various farmland and artificial habitats typical for CAs to forest and scrubland-grassland mosaic typical for MTAs. Second, we selected one of these areas and compared bird species richness between the MTA and the nearby CA using generalized linear mixed effects models. We found that the number of species of conservation concern was significantly higher in the MTA than in the CA. With respect to habitats, bird species richness was significantly higher in the MTA than in the CA for open habitats, but not for forest habitats. Our results are thus consistent with the view that military training creates areas that are different from the surrounding landscape in terms of land cover, and that this difference translates to a suitability for species of conservation concern. It is remarkable that the positive influence of military training is confined to open habitats, which are subject to the most intensive military activities and also suffer the highest degree of deterioration in European landscapes.  相似文献   

4.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

5.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

6.
Much of the remaining native rangeland in the Great Plains in the United States is privately owned and managed for beef production, and this single priority for land use may be contributing to declining avian biodiversity through a loss of structural heterogeneity. One proposed solution is to use multiple grazing systems across ranches, under the assumption that this approach will increase heterogeneity of vegetation structure and avian diversity across the landscape. We tested the relationship between grazing systems and avian diversity in the Nebraska Sandhills during 2014 and 2015 on a landscape that included 11 management units containing 5 different grazing systems. We used multivariate models to examine the relationship of bird diversity and communities to grazing systems at the management unit scale, and we used simulations to combine empirical data from ≥1 grazing system into virtual landscapes to test the hypothesis that multiple grazing systems would result in greater heterogeneity. The 5 most common avian species made up 84% of observations (28 species), and songbird richness was 5–6 species/7.06 ha at 53% of our plots. Variation in each of the diversity measures (Shannon diversity range = 0.41–2.2, Simpson's diversity range = 0.24–0.88) was best explained by the previous dormant season's stocking rate, and richness declined by about 1 species/plot with an increase in 1 animal unit month (AUM)/ha. Songbird community structure showed the most variance between management unit, but grazing system explained little community variation. None of the simulated landscapes consistently had greater structural heterogeneity of visual obstruction reading, litter depth, and cover of bare ground than others, and there was a limited level of heterogeneity overall in the simulated landscapes. In contrast to our predictions, a variety of grazing systems did not increase heterogeneity of vegetation structure across the landscape. Thus, conservation practitioners should encourage the use of other strategies to create structural heterogeneity, such as prescribed fires and extreme stocking rates, which will support a diverse grassland songbird community (i.e., a greater variety of bird species) across the landscape. © 2020 The Wildlife Society.  相似文献   

7.
The Mediterranean climate region of central Chile is rich in biodiversity and contains highly productive agricultural lands, which creates challenges for the preservation of natural habitats and native biodiversity. Ecological data and studies for the region are also limited, making informed conservation in agricultural landscapes difficult. The increasing availability of remotely sensed data provide opportunities to relate species occurrences to measures of landscape heterogeneity even when field measures of habitat structure are lacking. When working with such remotely sensed data, it’s important to select appropriate measures of heterogeneity, including common metrics of landscape composition as well as frequently overlooked shape metrics. In this contribution we combine bird surveys with multispectral satellite imagery to develop boosted regression tree models of avian species richness, and of habitat use for 15 species across a mixed vineyard-matorral landscape in central Chile. We found a range of associations between individual species and land cover types, with the majority of species occurring most frequently in remnant habitats and ecotones rather than the interiors of large vineyard blocks. Models identified both metrics of landscape composition and patch shape as being important predictors of species occurrence, suggesting that shape metrics can complement more commonly used metrics of landscape composition. Vineyards that include corridors or islands of remnant habitat among vine blocks may increase the amount of area available to many species, although some species may still require large tracts of intact natural habitat to persist.  相似文献   

8.
The knowledge and conservation of diminishing valuable habitats in agricultural landscapes are of key importance in saving declining farmland biodiversity. One of these habitats is the traditional orchard whose role in supporting birds is still poorly known, especially in winter. We counted birds in 106 orchards differing in management intensity (abandoned, traditional, and intensive) during December 2009 and January 2010 in Wielkopolska, western Poland and measured site characteristics and composition of surrounding landscapes for every orchard. Old abandoned and traditionally managed orchards had significantly higher bird species richness than intensive ones. Irrespective of orchard type, bird species richness as well as density were positively influenced by the cover of unmown herb layer in orchards and tree diversity. Tree and fruit densities positively affected bird species richness and density mainly in abandoned orchards while in other orchard types the effect of these variables was less pronounced. Land cover diversity in a landscape had a positive effect on species richness and density mostly in abandoned orchards and we believe that this effect reflects the elevated utilization of such orchards by birds from the surrounding landscape. Thus, abandoned, as well as traditionally managed orchards seems to be especially important habitats that offer food source and refuge for wintering birds and should be protected. We propose to diversify fruit production by planting various tree species, leaving part of the herb layer unmown and several trees unharvested in intensive orchards in order to improve suitability of modern orchards for birds.  相似文献   

9.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

10.
Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.  相似文献   

11.
Agricultural intensification resulted in substantial loss of farmland biodiversity. Semi-natural habitats may be viewed as potential buffers of these adverse impacts, but a rigorous assessment of their capacity for supporting farmland biodiversity is lacking. In this study, we explored conservation potential of two different types of semi-natural habitats for birds in intensively-used agricultural landscapes – farmland hedges (i.e., linear strips of shrubby and tree vegetation) and open scrubland (i.e., scattered shrubs and abandoned orchards). Specifically, we tested whether the abundance and species richness of birds differ between these habitats considering various species traits, such as habitat affinity (i.e., forest, farmland and urban species), diet specialization (i.e., animal eaters, plant eaters, and omnivores) and conservation status (Species of European Conservation Concern). We found that open scrubland hosted on average 37.9 bird species and 122.6 individuals per 1 km2 of the transect, whereas farmland hedges hosted only 19 species and 61.8 individuals per 1 km2 of the transect. However, results have substantially changed if we considered the area of suitable habitat into account. More specifically, open scrubland hosted more bird species and individuals when we considered open habitat species and the area of open habitats, whereas farmland hedges had higher species diversity and individuals of woodland bird species when we considered the area of woodland habitats. Similarly, analyses of habitat affiliations of individual species corresponded to the whole-community patterns; and revealed that several woodland bird species were mainly associated with farmland hedges (e.g., Chaffinch Fringilla coelebs, Common Nightingale Luscinia megarhynchos and Blackcap Sylvia atricapilla), whereas the open scrubland was preferred by open habitat bird species (e.g., Corn Bunting Emberiza calandra, Quail Coturnix coturnix and Skylark Alauda arvensis). These results demonstrate that semi-natural habitats, both open scrubland and farmland hedges, have large potential for promotion and conservation of bird communities within intensively used agricultural landscapes, as both may have represented suitable habitats for species with different ecological requirements. Therefore, management measures focused on the enlargement of the area of these habitats, in combination with suitable management (e.g., regulating the progress of natural succession in open scrubland; increasing structural diversity of existing farmland hedges), may substantially contribute to bird conservation within agricultural landscapes.  相似文献   

12.
Agriculture intensification has drastically altered farmland mosaics, while semi-natural grasslands have been considerably reduced and fragmented. Bird declines in northern temperate latitudes are attributed to habitat loss and degradation in farmed landscapes. Conversely, landscape-modification effects on grassland/farmland bird communities are less studied in the South American temperate grasslands. We investigated how bird communities were influenced by landscape characteristics in the Rolling Pampa (Argentina). We sampled bird communities in 356 landscapes of 1-km radius that varied in cover and configuration of pastureland, flooding grassland and cropland. Using generalized linear models, we explored the relationship between both bird species richness and abundance, and landscape structure. Analyses were carried out for all species, and open-habitat, grassland and aquatic species. Pasture area was far the most important factor, followed by landscape composition, in predicting species richness and abundance, irrespective of specific habitat preferences, followed by partially-flooded grassland cover and its mean shape index. Grassland fragmentation did not affect species richness or abundance. When comparing the effects of landscape variables on bird richness and abundance (using mean model coefficients), pasture and grassland area effects were on average more than four times greater than those of compositional heterogeneity, and about ten times greater than shape effects. To conserve species-rich bird communities persisting in Rolling Pampa farmland, we recommend the preservation of pasture and grassland habitats, irrespective of their fragmentation level, in intensively managed farmland mosaics.  相似文献   

13.
农业景观中的自然、半自然生境等非农生境可为传粉昆虫提供丰富的食物来源、栖息地、繁殖地、避难所等,对维持生物多样性的稳定起着不可替代的作用。以巩义典型的山地-丘陵-河川混杂的复杂景观和民权的平原农业简单景观为研究区,分析不同景观背景下传粉昆虫群落的物种组成及其在不同生境中的分布特征。结果表明:(1)巩义研究区内累计捕获传粉昆虫18582头,民权研究区内累计捕获传粉昆虫18518头,优势传粉昆虫功能群为双翅目、膜翅目、鞘翅目和鳞翅目等;(2)景观复杂度更高的巩义研究区的传粉昆虫多样性、丰富度以及均匀度均显著高于民权研究区;存在大面积农田斑块的平原景观中则有更多的优势传粉昆虫个体;(3)农田斑块中具有更高的物种丰富度,但林地物种的多样性和均匀度则相对稍高些。农田斑块在作物花期能有效的提高传粉者种群密度,但林地等自然、半自然生境对于维持传粉者多样性和食物缺乏期种群的稳定具有重要作用。因此在未来为确保农业景观中传粉者的多样性与传粉服务的稳定,一方面要关注自然、半自然生境的作用,同时也要考虑不同景观背景下异质性特征对不同生物类群的影响差异。  相似文献   

14.
Biodiversity in agricultural landscapes can be increased with conversion of some production lands into 'more-natural'- unmanaged or extensively managed - lands. However, it remains unknown to what extent biodiversity can be enhanced by altering landscape pattern without reducing agricultural production. We propose a framework for this problem, considering separately compositional heterogeneity (the number and proportions of different cover types) and configurational heterogeneity (the spatial arrangement of cover types). Cover type classification and mapping is based on species requirements, such as feeding and nesting, resulting in measures of 'functional landscape heterogeneity'. We then identify three important questions: does biodiversity increase with (1) increasing heterogeneity of the more-natural areas, (2) increasing compositional heterogeneity of production cover types and (3) increasing configurational heterogeneity of production cover types? We discuss approaches for addressing these questions. Such studies should have high priority because biodiversity protection globally depends increasingly on maintaining biodiversity in human-dominated landscapes.  相似文献   

15.
洪咏怡  卢训令  赵海鹏 《生态学报》2021,41(5):2045-2055
鸟类是地球生物多样性中的重要组成部分,在生态系统功能和服务中发挥着重要作用,是生态环境变化的重要指示物种。农业景观中的食虫鸟类提供了重要的虫害控制服务。当前,农业景观中鸟类多样性丧失加剧,为探讨鸟类多样性在各生境以及年际间的变化,以黄淮平原为研究区,在河流、湖泊、农田、村庄等生境中共设置20个样点。于2016-2019年连续4年在繁殖期采用样线法对鸟类进行多样性调查。调查结果显示:(1)共发现22922只个体,分属14目,38科,53属。从区系分布来看,各生境各年间均以广布种为主;从生态类群来看,鸣禽占绝对优势;从居留型来看,留鸟所占比例最高。(2)在食性组成上,从物种丰富度看,食虫鸟类有57种,约占总物种数的77%;从个体数来看,杂食性鸟类占比超52%。(3)物种丰富度、多样性和均匀度指数最高值均出现在湖泊或河流生境中。(4)鸟类群落相似性分析显示,各生境间鸟类群落均为中等相似程度;鸟类物种丰富度波动幅度在农田和村庄中呈逐年上升趋势。(5)物种多样性加性拆分分析显示,在生境尺度上,局地的α多样性是生物多样性的最重要组成,而从整个研究区来看,生境间的差异则更为重要。造成鸟类多样性时空差异的原因复杂多样,而生境异质性的增加和水域的存在对提高鸟类多样性是具有积极作用的。调查中超过77%的物种和40%的个体均为食虫鸟类,应当充分重视鸟类为区域农业景观提供的虫害控制服务。本研究可为区域鸟类多样性保护及鸟类提供的生态系统服务的提升管理提供理论基础和科学依据。  相似文献   

16.
卢训令  赵海鹏  孙金标  杨光 《生态学报》2019,39(9):3133-3143
农业景观中的鸟类多样性对生态系统功能和服务的形成与维持具有重要作用。黄淮平原区是我国最重要的农业景观区之一,为探讨区域内农业景观中鸟类多样性特征和不同生境间的差异,在研究区农业景观不同生境中布设样点,调查繁殖期鸟类多样性特征。结果显示:(1)共记录到32科、49属、66种的10044只个体,但优势科属明显;(2)物种丰富度、多样性和均匀度均表现出在沟渠、湖泊生境中较高,农田和村庄生境中相对较低,但物种多度呈现出村庄生境中最高,其次是沟渠和农田生境,湖泊生境中最低;(3)在区系分布上,各生境中均以广布种为主,生态类群上,鸣禽在各生境中均占绝对优势,涉禽和游禽主要分布在沟渠和湖泊生境中,从居留型来看,留鸟是各生境中的主导类群,候鸟、旅鸟和迷鸟比例很低;(4)鸟类群落异质性分析显示,各生境间的相似性总体上较高,表明区域内农业景观中鸟类组成具有较高的重叠性。研究显示农业景观中湖泊和沟渠的存在能有效的提高区域鸟类的丰富度和多样性,而沟渠的存在能有效的提高鸟类个体多度,农田和村庄有助于特定类群多度的增加,因此在未来的区域持续农业景观的构建中一方面要重视自然、半自然非农生境的作用,另一方面也不能忽视不同生物类群对景观异质性响应和对生境特征需求的差异。  相似文献   

17.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

18.
Species distribution models are often used to study the biodiversity of ecosystems. The modelling process uses a number of parameters to predict others, such as the occurrence of determinate species, population size, habitat suitability or biodiversity. It is well known that the heterogeneity of landscapes can lead to changes in species’ abundance and biodiversity. However, landscape metrics depend on maps and spatial scales when it comes to undertaking a GIS analysis.We explored the goodness of fit of several models using the metrics of landscape heterogeneity and altitude as predictors of bird diversity in different landscapes and spatial scales. Two variables were used to describe biodiversity: bird richness and trophic level diversity, both of which were obtained from a breeding bird survey by means of point counts. The relationships between biodiversity and landscape metrics were compared using multiple linear regressions. All of the analyses were repeated for 14 different spatial scales and for cultivated, forest and grassland environments to determine the optimal spatial scale for each landscape typology.Our results revealed that the relationships between species’ richness and landscape heterogeneity using 1:10,000 land cover maps were strongest when working on a spatial scale up to a radius of 125–250 m around the sampled point (circa 4.9–19.6 ha). Furthermore, the correlation between measures of landscape heterogeneity and bird diversity was greater in grasslands than in cultivated or forested areas. The multi-spatial scale approach is useful for (a) assessing the accuracy of surrogates of bird diversity in different landscapes and (b) optimizing spatial model procedures for biodiversity mapping, mainly over extensive areas.  相似文献   

19.
Bird assemblages are sensitive to changes in landscape composition and the environment, such as those that result from drought. In this study, the relationship between landscape composition and avian functional diversity in traditional agricultural ecosystems in the Civilian Control Zone (CCZ) of Korea was examined. In addition, the resilience of biodiversity to changes in landscape elements resulting from drought conditions was investigated. The traditional agricultural landscape (TAL) of the sites studied was divided into three types: TAL 1 had a high proportion of rice paddies, TAL 2 included large forest areas, and TAL 3 represented areas with drylands. Of these, TAL 1 showed the highest species richness and functional richness, but these measures were most vulnerable to drought. Meanwhile, TAL 2 showed that the bird communities were more tolerant under drought event. This study shows that to conserve and enhance the diversity of birds in traditional agricultural landscapes of Northeast Asia, active management of forest areas is needed to protect bird populations. In addition, commercial pressures to develop this area will require urgent biodiversity conservation plans to protect the unique biodiversity of the Korean CCZ. This study thus provides landscape management guidance for conservation planning.  相似文献   

20.
The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land‐use strategies: off‐setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of “wildlife‐friendly” habitat features (land sharing). However, a key unanswered question is whether sparing or sharing farming would best conserve functional diversity, which can promote ecosystem stability and resilience to future land‐use change. Focusing on bird communities in tropical cloud forests of the Colombian Andes, we test the performance of each strategy in conserving functional diversity. We show that multiple components of avian functional diversity in farmland are positively related to the proximity and extent of natural forest. Using landscape and community simulations, we also show that land‐sparing agriculture conserves greater functional diversity and predicts higher abundance of species supplying key ecological functions than land sharing, with sharing becoming progressively inferior with increasing isolation from remnant forest. These results suggest low‐intensity agriculture is likely to conserve little functional diversity unless large blocks of adjacent natural habitat are protected, consistent with land sparing. To ensure the retention of functionally diverse ecosystems, we urgently need to implement mechanisms for increasing farmland productivity whilst protecting spared land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号