首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta‐analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta‐analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P‐induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.  相似文献   

2.
In vegetated terrestrial ecosystems, carbon in below- and aboveground biomass (BGB, AGB) often constitutes a significant component of total-ecosystem carbon stock. Because carbon in the BGB is difficult to measure, it is often estimated using BGB to AGB ratios. However, this ratio can change markedly along resource gradients, such as water availability, which can lead to substantial errors in BGB estimates. In this study, BGB and AGB sampling was carried out in Eucalyptus populnea-dominated woodland communities of northeast Australia to examine patterns of BGB to AGB ratio and vertical root distribution at three sites along a rainfall gradient (367, 602, and 1,101 mm). At each site, a vegetation inventory was undertaken on five transects (100 × 4 m), and trees representing the E. populnea vegetation structure were harvested and excavated to measure aboveground and coarse-root (diameter of at least 15 mm) biomass. Biomass of fine and small roots (diameter less than 15 mm) at each site was estimated from 40 cores sampled to 1 m depth. The BGB to AGB ratio of E. populnea-dominated woodland plant communities declined from 0.58 at the xeric end to 0.36 at the mesic end of the rainfall gradient. This was due to a marked decline in AGB with increased aridity whereas the BGB was relatively stable. The vertical distribution of fine roots in the top 1 m of soil varied along the rainfall gradient. The mesic sites had more fine-root biomass (FRB) in the upper soil profile and less at depth than the xeric site. Accordingly, at the xeric site, a much larger proportion of FRB was found at depth compared to the mesic sites. The vertical distribution patterns of small roots of the E. populnea woodland plant communities were consistently )-shaped, with the highest biomass occurring at 15–30-cm depth. The potential significance of such a rooting pattern for grass–tree and shrub–tree co-existence in these ecosystems is discussed. Overall, our results revealed marked changes in BGB to AGB ratio of E. populnea woodland communities along a rainfall gradient. Because E. populnea woodlands cover a large area (96 M ha), their contribution to continental-scale carbon sequestration and greenhouse gas emission can be substantial. Use of the rainfall-zone-specific ratios found in this study, in lieu of a single generic ratio for the entire region, will significantly improve estimates of BGB carbon stocks in these woodlands. In the absence of more specific data, our results will also be relevant in other regions with similar vegetation and rainfall gradients (that is, arid and semiarid woodland ecosystems).  相似文献   

3.
There are two important allocation hypotheses in plant biomass allocation: allometric and isometric. We tested these two hypotheses in an alpine steppe using plant biomass allocation under nitrogen (N) addition and precipitation (Precip) changes at a community level. An in situ field manipulation experiment was conducted to examine the two hypotheses and the responses of the biomass to N addition (10 g N m?2 y?1) and altered Precip (±50% precipitation) in an alpine steppe on the Qinghai–Tibetan Plateau from 2013 to 2016. We found that the plant community biomass differed in its response to N addition and reduced Precip such that N addition significantly increased aboveground biomass (AGB), while reduced Precip significantly decreased AGB from 2014 to 2016. Moreover, reduced Precip enhanced deep soil belowground biomass (BGB). In the natural alpine steppe, the allocation between AGB and BGB was consistent with the isometric hypotheses. In contrast, N addition or altered Precip enhanced biomass allocation to aboveground, thus leading to allometric growth. More importantly, reduced Precip enhanced biomass allocation into deep soil. Our study provides insight into the responses of alpine steppes to global climate change by linking AGB and BGB allocation.  相似文献   

4.
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0–150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C‐N‐P stoichiometry across subtropical China, where soils are P‐impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C‐N‐P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C‐N‐P and stoichiometry to long‐term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.  相似文献   

5.
Aboveground biomass (AGB) and belowground biomass (BGB) allocation and productivity–richness relationship are controversial. Here, we assessed AGB and BGB allocation and the productivity–richness relationship at community level across four grassland types based on the biomass data collected from 80 sites across the Qinghai Plateau during 2011–2012. The reduced major axis regression and general linear models were used and showed that (a) the median values of AGB were significantly higher in alpine meadow than in other three grassland types; the ratio of root to shoot (R/S) was significantly higher in desert grassland (36.06) than intemperate grassland (16.60), alpine meadow (13.35), and meadow steppe (19.46). The temperate grassland had deeper root distribution than the other three grasslands, with about 91.45% roots distributed in the top 30 cm soil layer. (b) The slopes between log AGB and log BGB in the temperate grassland and meadow steppe were 1.09 and 1, respectively, whereas that in the desert grassland was 1.12, which was significantly different from the isometric allocation relationship. A competitive relationship between AGB and BGB was observed in the alpine meadow with a slope of ?1.83, indicating a trade‐off between AGB and BGB in the alpine meadow. (c) A positive productivity–richness relationship existed across the four grassland types, suggesting that the positive productivity–richness relationship might not be affected by the environmental factors at the plant location. Our results provide a new insight for biomass allocation and biodiversity–ecosystem functioning research.  相似文献   

6.
  1. Parallel latitudinal clines in flowering time have been documented in both the invasive and native ranges of plants. Furthermore, flowering time has been found to affect biomass at maturity. Therefore, understanding how these flowering times affect biomass accumulation across latitudes is essential to understanding plant adaptations and distributions.
  2. We investigated and compared trends in first flowering day (FFD), aboveground biomass (AGB), belowground biomass (BGB), and BGB:AGB ratio of the salt marsh grass Spartina alterniflora along latitudinal gradients from the invasive (China, 19–40°N) and native range (United States, 27–43°N) in a greenhouse common garden experiment, and tested whether FFD would drive these divergences between invasive and native ranges.
  3. The invasive populations produced more (~20%, ~19%) AGB and BGB than native populations, but there were no significant differences in the FFD and BGB:AGB ratio. We found significant parallel latitudinal clines in FFD in both invasive and native ranges. In addition, the BGB:AGB ratio was negatively correlated with the FFD in both the invasive and native ranges but nonsignificant in invasive populations. In contrast, AGB and BGB increased with latitude in the invasive range, but declined with latitude in the native range. Most interestingly, we found AGB and BGB positively correlated with the FFD in the native range, but no significant relationships in the invasive range.
  4. Our results indirectly support the evolution of increased competitive ability hypothesis (EICA) that S. alterniflora has evolved to produce greater AGB and BGB in China, but the flowering and allocation pattern of native populations is maintained in the invasive range. Our results also suggest that invasive S. alterniflora in China is not constrained by the trade‐off of earlier flowering with smaller size, and that flowering time has played an important role in biomass allocation across latitudes.
  相似文献   

7.
Plant biomass is a key parameter for estimating terrestrial ecosystem carbon (C) stocks, which varies greatly as a result of specific environmental conditions. Here, we tested environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. We found that above-ground biomass (AGB) and below-ground biomass (BGB) had a similar change trend in the order of Stipa bungeana > Leymus secalinus > Artemisia sacrorum > Artemisia scoparia, whereas shoot ratio (R/S) displayed an opposite change trend. There was a significantly positive linear relationship between the AGB and BGB, regardless of plant species (p < 0.05). Furthermore, more than 50% of the AGB were found in 20–50 cm of plant height in Compositae plants (A. sacrorum, A. scoparia), whereas over 60% of the AGB were found in 20–80 cm of plant height in Gramineae plants (S. bungeana, L. secalinus). For each plant species, more than 75% of the BGB was distributed in 0–10 cm soil depth, and 20% was distributed in 10–20 cm soil depth, while less than 5% was distributed in 20–40 cm soil depth. Further, AGB and BGB were highly affected by environmental driving factors (soil properties, plant traits, topographic properties), which were identified by the structural equation model (SEM) and the generalized additive models (GAMs). In addition, AGB was directly affected by plant traits, and BGB was directly affected by soil properties, and soil properties associated with plant traits that affected AGB and BGB through interactive effects were 9.12% and 3.59%, respectively. However, topographic properties had a weak influence on ABG and BGB (as revealed by the lowest total pathway effect). Besides, soil organic carbon (SOC), soil microbial biomass carbon (MBC), and plant height had a higher relative contribution to AGB and BGB. Our results indicate that environmental driving factors affect plant biomass in natural grassland in the Loess Plateau.  相似文献   

8.
Aims Belowground to aboveground biomass (BGB/AGB) ratio is a highly valued parameter of the terrestrial carbon cycle and productivity. However, it remains far from clear whether plant biomass partitioning to aboveground and belowground is isometric (equal partitioning) or allometric (unequal partitioning) at community levels and what factors are necessary in order to regulate the partitioning. This study aimed to comprehensively find out the patterns of biomass partitioning and their regulatory factors across forests in China.Methods The data of AGB and BGB were compiled from 1542 samples for communities across forests in China. Standardized major axis regression was conducted to examine whether AGB and BGB were allocated isometrically or allometrically at a community level. Redundancy analysis was used to analyze the relationships of BGB/AGB ratio with climatic factors and soil properties.Important findings We found that the slopes of the relationship between logAGB and logBGB were not always comparable to 1.0 (isometric allocation) at community levels, including primary forest, secondary forest, and planted forest. Meanwhile, samples in clay, loam, and sand soil types also presented the same phenomenon. Furthermore, the radically different allocations of AGB and BGB were found in northern and southern China. Environmental factors totally explained 3.86% of the variations in the BGB/AGB ratio at the community level, which include the mean annual precipitation, mean annual temperature, potential water deficit index, soil carbon content, soil nitrogen content, soil clay, soil loam, soil sand, soil pH, and soil bulk density. In addition, the environmental factors also have effects on the BGB/AGB ratio in other categories. The patterns revealed in this study are helpful for better understanding biomass partitioning and spreading the carbon circle models.  相似文献   

9.

Aim

Understanding and predicting ecosystem functioning such as biomass accumulation requires an accurate assessment of large-scale patterns of biomass distribution and partitioning in relation to climatic and soil environments.

Methods

We sampled above- and belowground biomass from 26 sites spanning 1500 km in Inner Mongolian grasslands, compared the difference in aboveground, belowground biomass and below-aboveground biomass ratio (AGB, BGB, and B/A, respectively) among meadow steppe, typical steppe, and desert steppe types. The relationships between AGB, BGB, B/A and climatic and soil environments were then examined.

Results

We found that AGB and BGB differed significantly among three types of grasslands while B/A did not differ. Structural equation model analyses indicated that mean annual precipitation was the strongest positive driver for AGB and BGB. AGB was also positively associated with soil organic carbon, whereas B/A was positively associated with total soil nitrogen.

Conclusions

These results indicated that precipitation positively influence plant production in Inner Mongolian grasslands. Contrary to the prediction from the optimal partitioning hypothesis, biomass allocation to belowground increased with soil total nitrogen, suggesting that more productive sites may increase belowground allocation as an adaptive strategy to potentially high fire frequencies.  相似文献   

10.
N and P concentrations and their ratios were determined for 132 foliar and 120 below-ground biomass (BGB) samples obtained at 132 sites along the 4500 km Chinese Grassland Transect (CGT) across the Inner Mongolian and Qinghai–Tibet Plateaus. Patterns of foliar and BGB N, P and their ratio (N/P) at the community level were related to altitude, temperature, and precipitation gradients. Also, patterns of relative N and P foliar and BGB concentrations were determined (NF/B, foliar N/BGB N; PF/B, foliar P/BGB P). The relationship between foliar N concentrations and mean annual temperature (MAT) was negative, agreeing with the Temperature-Plant Physiological hypothesis, whereas BGB N decreased with decreasing MAT, supporting the Biogeochemical hypothesis. Patterns of BGB N varying with altitude, MAP and MAT differed from the patterns for leaf N, which may indicate differences in nutrient allocation and utilization by leaves and BGB. NF/B and PF/B may reflect trade-offs by plants for N and P in leaves and BGB. For the entire CGT, NF/B and PF/B increased as altitude increased. NF/B was positively related with MAP but negatively related with MAT, while PF/B showed no correlations with MAP and MAT. Results suggest that ecological stoichiometry at the community level is similar to that at the species level. Strategies of nutrient utilization by leaves and BGB are indicated to be different, and abiotic environmental conditions could influence the stoichiometric characteristics and nutrient allocation to leaves and BGB.  相似文献   

11.
Since fungi and bacteria are the dominant decomposers in soil, their distinct physiologies are likely to differentially influence rates of ecosystem carbon (C) and nitrogen (N) cycling. We used meta‐analysis and an enzyme‐driven biogeochemical model to explore the drivers and biogeochemical consequences of changes in the fungal‐to‐bacterial ratio (F : B). In our meta‐analysis data set, F : B increased with soil C : N ratio (R2 = 0.224, < 0.001), a relationship predicted by our model. We found that differences in biomass turnover rates influenced F : B under conditions of C limitation, while differences in biomass stoichiometry set the upper bounds on F : B once a nutrient limitation threshold was reached. Ecological interactions between the two groups shifted along a gradient of resource stoichiometry. At intermediate substrate C : N, fungal N mineralisation fuelled bacterial growth, increasing total microbial biomass and decreasing net N mineralisation. Therefore, we conclude that differences in bacterial and fungal physiology may have large consequences for ecosystem‐scale C and N cycling.  相似文献   

12.
While mowing‐induced changes in plant traits and their effects on ecosystem functioning in semi‐arid grassland are well studied, the relations between plant size and nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry and allocation with variations in sizes of Leymus chinensis, the dominant plant species in Inner Mongolia grassland, to various mowing frequencies in a 17‐yr controlled experiment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and carbon (C) in leaves and stems were significantly increased, negatively correlating with plant sizes. Moreover, we found significant trade‐offs between the concentrations and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis aboveground biomass, linearly correlating with plant size, significantly decreased with increased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were positively correlated with plant size, showing an exponential pattern. With increased mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves to stems of N, P, and C by the tendencies of negative parabola, positive, and negative linear. The results of structure equation modeling showed that the N, P, and C allocations were co‐regulated by biomass allocation and nutrient concentration ratios of leaves to stems. In summary, we found a significant decoupling effect between plant traits and nutrient strategies along mowing frequencies. Our results reveal a mechanism for how long‐term mowing‐induced changes in concentrations, accumulations, ecological stoichiometry, and allocations of key elements are mediated by the variations in plant sizes of perennial rhizome grass.  相似文献   

13.
Plant carbon (C) and nitrogen (N) stoichiometry play an important role in the maintenance of ecosystem structure and function. To decipher the influence of changing environment on plant C and N stoichiometry at the subcontinental scale, we studied the shoot and root C and N stoichiometry in two widely distributed and dominant genera along a 2,200‐km climatic gradient in China's grasslands. Relationships between C and N concentrations and soil climatic variables factors were studied. In contrast to previous theory, plant C concentration and C:N ratios in both shoots and roots increased with increasing soil fertility and decreased with increasing aridity. Relative N allocation shifted from soils to plants and from roots to shoots with increasing aridity. Changes in the C:N ratio were associated with changes in N concentration. Dynamics of plant C concentration and C:N ratios were mainly caused by biomass reallocation and a nutrient dilution effect in the plant‐soil system. Our results suggest that the shifted allocation of C and N to different ecosystem compartments under a changing environment may change the overall use of these elements by the plant‐soil system.  相似文献   

14.
广西猫儿山不同海拔土壤碳氮磷生态化学计量特征   总被引:2,自引:0,他引:2  
为探究我国华南地区山地土壤有机碳(C)、氮(N)、磷(P)含量垂直分布特征,阐明土壤C、N、P生态化学计量特征对海拔和土层深度的响应,以广西猫儿山为研究对象,选取不同海拔的10个地点,采集了不同发生层的土壤,测定有机C、N、P、pH、容重和机械组成等土壤性质,探讨了不同海拔及深度土壤C、N、P生态化学计量特征及其影响因素.结果表明: 随着海拔升高,土壤C、N、C/P、N/P均呈增加趋势,土壤P呈先增后降趋势,C/N则呈先增后保持平稳趋势;随着土壤深度增加,土壤C、N、P、C/P、N/P均呈显著降低趋势,C/N无显著变化,C、N在不同发生层土壤间具有较高的耦合性(C/N变异系数为4.0%);土壤P在空间上的变异较小(不同海拔、发生层间变异系数分别为31.0%和22.0%).冗余分析结果显示,前2个排序轴反映了土壤C、N、P化学计量特征变异信息量的74.8%,土壤pH、容重和海拔对土壤C、N、P化学计量特征有显著影响,而黏粒、粉粒和砂粒影响效果不显著.  相似文献   

15.
The traditional view holds that biological nitrogen (N) fixation often peaks in early‐ or mid‐successional ecosystems and declines throughout succession based on the hypothesis that soil N richness and/or phosphorus (P) depletion become disadvantageous to N fixers. This view, however, fails to support the observation that N fixers can remain active in many old‐growth forests despite the presence of N‐rich and/or P‐limiting soils. Here, we found unexpected increases in N fixation rates in the soil, forest floor, and moss throughout three successional forests and along six age‐gradient forests in southern China. We further found that the variation in N fixation was controlled by substrate carbon(C) : N and C : (N : P) stoichiometry rather than by substrate N or P. Our findings highlight the utility of ecological stoichiometry in illuminating the mechanisms that couple forest succession and N cycling.  相似文献   

16.
Over the last few decades, there has been an increasing number of controlled‐manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers [i.e., nitrogen (N) deposition, warming, and elevated CO2] on primary productivity and on the biogeochemistry of carbon (C), N, and phosphorus (P) across different terrestrial ecosystems. Here, we capitalize on this large amount of information by performing a comprehensive meta‐analysis (>2000 case studies worldwide) to address how C:N:P stoichiometry of plants, soils, and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (i) individual effects of N addition and elevated CO2 on C:N:P stoichiometry are stronger than warming, (ii) combined effects of pairs of global change drivers (e.g., N addition + elevated CO2, warming + elevated CO2) on C:N:P stoichiometry were generally weaker than the individual effects of each of these drivers, (iii) additive interactions (i.e., when combined effects are equal to or not significantly different from the sum of individual effects) were more common than synergistic or antagonistic interactions, (iv) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (v) C:N:P responses to global change are strongly affected by ecosystem type, local climate, and experimental conditions. Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long‐term ecosystem‐scale studies testing multifactor effects on plants and soils are urgently required across different world regions.  相似文献   

17.
Stoichiometric homeostasis of heterotrophs is a common, but not always well‐examined premise in ecological stoichiometry. We experimentally evaluated the relationship between substrate (plant litter) and consumer (microorganisms) stoichiometry for a tropical terrestrial decomposer system. Variation in microbial C : P and N : P ratios tracked that of the soluble litter fraction, but not that of bulk leaf litter material. Microbial N and P were not isometrically related, suggesting higher rates of P than N sequestration in microbial biomass. Shifts in microbial stoichiometry were related to changes in microbial community structure. Our results indicate that P in dissolved form is a major driver of terrestrial microbial stoichiometry, similar to aquatic environments. The demonstrated relative plasticity in microbial C : P and N : P and the critical role of P have important implications for theoretical modelling and contribute to a process‐based understanding of stoichiometric relationships and the flow of elements across trophic levels in decomposer systems.  相似文献   

18.
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long‐term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient‐acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29–42% higher and C : P ratios were 6–25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27–32) than for NB (34–49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N‐acquiring to P‐acquiring enzymes in litter was higher for 2yrB than NB, whereas 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72 ± 2% mass remaining at the end of experiment) than for 4yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed‐age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N‐limited ecosystem conditions during the postfire recovery phase.  相似文献   

19.
《植物生态学报》2017,41(3):325
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

20.
周正虎  王传宽 《植物生态学报》2016,40(12):1257-1266
土壤碳(C)、氮(N)、磷(P)化学计量特征会显著影响微生物的生长、群落结构、生物量C:N:P化学计量及其代谢活动。然而生态系统演替过程中土壤-微生物C:N:P化学计量的时间格局及其协调关系还不明确。为此, 该研究收集了2016年5月以前发表的文献中19个生态系统演替序列(包括13个森林、6个草地生态系统)的土壤-微生物生物量C:N:P研究结果, 整合分析了其中土壤-微生物生态化学计量的时间动态, 结果表明: (1)生态系统演替过程中土壤C:N没有一致的时间格局, 而土壤C:P和N:P均随演替进程显著增加, 其中土壤C:N:P与演替时间之间线性关系的斜率与相应演替序列的初始土壤有机C含量呈负相关关系。(2)演替进程中土壤-微生物生物量C:N:P没有一致的时间格局。(3)微生物生物量C占土壤有机C百分比(qMBC)、微生物生物量N占土壤全N百分比、微生物生物量P占土壤全P百分比均随着演替进程而显著增加, 即单位资源所能支持的微生物生物量随着演替进程而增加, 这与宏观生态系统演替理论相符。(4) qMBC随着土壤C:N、C:P和N:P以及C:N、C:P和N:P化学计量不平衡性(即土壤C:N、C:P和N:P分别除以微生物生物量C:N、C:P和N:P)的增加而减小; 其中, C:N、C:P和N:P化学计量不平衡性解释了qMBC变异性的37%-57%, 是演替时间解释率的7-17倍, 表明土壤-微生物生态化学计量关系对qMBC演替动态有重要影响。该研究强调了生态化学计量学理论和生态系统演替理论在土壤微生物时间动态研究中的重要作用, 表明适当地融合生态学宏观理论于土壤微生物研究可以加深对土壤-微生物生态过程的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号