首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The change in spring phenology is recognized to exert a major influence on carbon balance dynamics in temperate ecosystems. Over the past several decades, several studies focused on shifts in spring phenology; however, large uncertainties still exist, and one understudied source could be the method implemented in retrieving satellite‐derived spring phenology. To account for this potential uncertainty, we conducted a multimethod investigation to quantify changes in vegetation green‐up date from 1982 to 2010 over temperate China, and to characterize climatic controls on spring phenology. Over temperate China, the five methods estimated that the vegetation green‐up onset date advanced, on average, at a rate of 1.3 ± 0.6 days per decade (ranging from 0.4 to 1.9 days per decade) over the last 29 years. Moreover, the sign of the trends in vegetation green‐up date derived from the five methods were broadly consistent spatially and for different vegetation types, but with large differences in the magnitude of the trend. The large intermethod variance was notably observed in arid and semiarid vegetation types. Our results also showed that change in vegetation green‐up date is more closely correlated with temperature than with precipitation. However, the temperature sensitivity of spring vegetation green‐up date became higher as precipitation increased, implying that precipitation is an important regulator of the response of vegetation spring phenology to change in temperature. This intricate linkage between spring phenology and precipitation must be taken into account in current phenological models which are mostly driven by temperature.  相似文献   

2.
3.
异质景观中水土流失的空间变异与尺度变异   总被引:16,自引:4,他引:16  
邱扬  傅伯杰 《生态学报》2004,24(2):330-337
综述了景观格局与水土流失过程的空间变异与尺度变异的理论和方法研究进展,提出了水土流失空间变异与尺度变异的研究方向。景观格局与生态过程的尺度变异一般处于单一尺度变异和多重尺度变异的连续体之中。尺度转换即尺度外推包括尺度上推和尺度下推,其可行性决定于尺度变异特征。水土流失不仅是多因子综合影响的一个复杂的时空变异过程,而且也是一个典型的多重尺度变异过程。传统的水土流失研究一般集中在坡面径流小区和小流域两个单一尺度上,这在很大程度上限制了水土流失的空间尺度外推和过程分析。近年来,尽管国内外很多学者开始关注水土流失的尺度变异及其影响因子.但只是对水土流失在不同大小的样地尺度以及小集水区尺度上的差异及其影响因子进行了初步的比较研究,尤其缺乏水土流失及其相关环境因子的连续尺度变异特征的机制分析。空间变异和尺度变异研究方法包括统计模型模拟法、物理模型与物理过程模拟法以及综合分析与综合预报法三大类。每种方法都有其优缺点和其特定的适宜性,最佳方法组合的选取因研究对象、研究地区和研究时间的不同而异。土壤侵蚀预报模型包括经验统计模型和物理过程模型,就解决水土流失的跨尺度关系而言,基于物理过程的空间分布式的土壤侵蚀预报模型显著优于经验模型。这些模型在关键参数的空间变异性描述和水土流失的尺度变异性分析方面非常薄弱,尤其缺乏模型分辨率和研究范围对输出结果的影响研究。完善水土流失的“尺度一格局一过程”理论,加强多重尺度上水土流失及其相关环境因子的空间变异格局和尺度变异性的实地观测与数学分析,改进土壤侵蚀预报模型这3个方面是将来的研究重点。  相似文献   

4.
Population‐level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite‐derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green‐up for a 385‐ha mixed‐deciduous woodland. Using data spanning 13 years, we demonstrate that annual population‐level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite‐derived spring vegetation phenology. We go on to show that timing of local vegetation green‐up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote‐sensed vegetation phenology and reproductive phenology in both species. Marked within‐population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small‐scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within‐population variation could broaden the scale and scope of studies exploring phenological synchrony between organisms and their environment.  相似文献   

5.
Density‐dependent dynamics have considerable effects in many ecological processes and patterns that characterize natural populations. In the present study, we aim at evaluating the effect of density on the diet width and between‐individual variability in nine different pike cichlid Crenicichla lepidota populations dwelling in floodplain lagoons. Our results indicated that low‐density populations exhibit small diet breadth as well as small between‐individual variability in their diet. In addition, these populations were characterized by a nested diet pattern, where the diet of specialist individuals represented a subset of the food items consumed by generalist individuals. Populations with intermediate densities had a larger populational diet breadth while the individual diet breadth remained unchanged. This pattern was due to an increase in between‐individual variability in diet, which consequently decreases the diet overlap among individuals and thus lower diet nestedness. Finally, under high densities, the niche width at the population level decreased because of lower between‐individual variability and higher diet overlap. Together, these results showed that niche width exhibits a non‐linear function with density. At first, an increase in density increased the niche width because of greater between‐individual diet variability. However, after a threshold density value, the effect was reversed, and the niche width decreased because of a higher diet overlap among individuals.  相似文献   

6.
The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3–8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.  相似文献   

7.
8.
AimsUnderstanding the joint effects of plant development and environment on shifts of intraspecific leaf traits will advance the understandings of the causes of intraspecific trait variation. We address this question by focusing on a widespread species Clausena dunniana in a subtropical broad‐leaved forest.MethodsWe sampled 262 individuals of C. dunniana at two major topographic habitat types, the slope and hilltop, within the karst forests in Maolan Nature Reserve in southwestern China. We measured individual plant level leaf traits (i.e., specific leaf area (SLA), leaf area, leaf dry‐matter content (LDMC), and leaf thickness) that are associated with plant resource‐use strategies. We adopted a linear mixed‐effects model in which the plant size (i.e., the first principal component of plant basal diameter and plant height) and environmental factors (i.e., topographic habitat, canopy height, and rock‐bareness) were used as independent variables, to estimate their influences on the shifts of leaf traits.Key ResultsWe found that (1) plant size and the environmental factors independently drove the intraspecific leaf trait shifts of C. dunniana, of which plant size explained less variances than environmental factors. (2) With increasing plant size, C. dunniana individuals had increasingly smaller SLA but larger sized leaves. (3) The most influential environmental factor was topographic habitat; it drove the shifts of all the four traits examined. Clausena dunniana individuals on hilltops had leaf traits representing more conservative resource‐use strategies (e.g., smaller SLA, higher LDMC) than individuals on slopes. On top of that, local‐scale environmental factors further modified leaf trait shifts.ConclusionsPlant size and environment independently shaped the variations in intraspecific leaf traits of C. dunniana in the subtropical karst forest of Maolan. Compared with plant size, the environment played a more critical role in shaping intraspecific leaf trait variations, and potentially also the underlying individual‐level plant resource‐use strategies.  相似文献   

9.
  • Intraspecific trait variation and trait–climate relationships are crucial for understanding a species’ response to climate change. However, these phenomena have rarely been studied for tree species. Euptelea pleiospermum is a relict tree species with a wide distribution in China that offers a novel opportunity to examine such relationships.
  • Here, we measured 13 leaf traits of E. pleiospermum in 20 sites across its natural distribution in China. We investigated the extent of trait variation at local and regional scales, and developed geographic and climate models to explain trait variation at the regional scale.
  • We documented intraspecific trait variation among leaf traits of Epleiospermum at local and regional scales. Five traits exhibited relatively high trait variation: leaf area, leaf density and three leaf economic traits (leaf dry matter content, specific leaf area [SLA] and leaf phosphorus concentration). Significant trait–geography correlations were mediated by local climate. Most leaf trait variation could be explained (from 24% to 64%) by geographic or climate variables, except leaf width, leaf thickness, leaf dry matter content and leaf length–width ratio. Latitude and temperature were the strongest predictors of trait variation throughout the distribution of Epleiospermum in China, and temperature explained more leaf trait variation than precipitation. In particular, we showed that leaves had longer petiole lengths, higher SLA and lower densities in northern Epleiospermum populations. We suggest that northern Epleiospermum populations are adapting to higher latitudinal environments via high growth rate (higher SLA) and low construction investment strategies (lower leaf densities), benefitting northern migration.
  • Overall, we demonstrate that intraspecific trait variation reflects Epleiospermum response to the local environment. We call for consideration of intraspecific trait variation to examine specific climate response questions. In addition, provenance experiments using widely distributed species are needed to separate trait variation resulting from genetic differentiation and plastic responses to environmental change.
  相似文献   

10.
Research focusing on among‐individual differences in behaviour (‘animal personality’) has been blooming for over a decade. Central theories explaining the maintenance of such behavioural variation posits that individuals expressing greater “risky” behaviours should suffer higher mortality. Here, for the first time, we synthesize the existing empirical evidence for this key prediction. Our results did not support this prediction as there was no directional relationship between riskier behaviour and greater mortality; however there was a significant absolute relationship between behaviour and survival. In total, behaviour explained a significant, but small, portion (5.8%) of the variance in survival. We also found that risky (vs. “shy”) behavioural types live significantly longer in the wild, but not in the laboratory. This suggests that individuals expressing risky behaviours might be of overall higher quality but the lack of predation pressure and resource restrictions mask this effect in laboratory environments. Our work demonstrates that individual differences in behaviour explain important differences in survival but not in the direction predicted by theory. Importantly, this suggests that models predicting behaviour to be a mediator of reproduction‐survival trade‐offs may need revision and/or empiricists may need to reconsider their proxies of risky behaviours when testing such theory.  相似文献   

11.
Question: Different plant growth forms may have distinctly different functioning in ecosystems. Association of phenological patterns with growth form will therefore help elucidate the role of phenology in an ecosystem. We ask whether growth forms of common vascular plants differ in terms of vegetative and flowering phenology, and if such phenological differences are consistent across environmental gradients caused by landscape‐scale topography. Location: A high‐latitude alpine landscape in Finnmark County, Norway (70°N). Methods: We assessed vegetative and flowering phenology repeatedly in five growth forms represented by 11 common vascular plant species across an altitudinal gradient and among differing slope aspects. Results: Species phenology clustered well according to growth form, and growth form strongly explained variation in both flowering and vegetative phenology. Altitude and aspect were poor predictors of phenological variation. Vegetative phenology of the growth forms, ranked from slowest to fastest, was in the order evergreen shrubs <sedges‐deciduous shrubs <grasses <forbs, while a reverse ranking was found for flowering phenology. Conclusion: Growth form‐specific phenological patterns are associated with fundamentally different abilities for resource acquisition and resource conservation. The weak effect of landscape‐scale topographic factors indicates that variation within growth forms is mainly influenced by local environmental factors not accounted for in this study. On the basis of these results, we argue that growth forms should be considered as predictors of phenology together with the customary use of topography and normalized difference vegetation index, especially when assessing the role of phenology in an ecosystem.  相似文献   

12.
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy.  相似文献   

13.
1. Human land‐use has altered catchments on a large scale in most parts of the world, with one of the most profound changes relevant for streams and rivers being the widespread clearance of woody riparian vegetation to make way for livestock grazing pasture. Increasingly, environmental legislation, such as the EU Water Framework Directive (EU WFD), calls for bioassessment tools that can detect such anthropogenic impacts on ecosystem functioning. 2. We conducted a large‐scale field experiment in 30 European streams to quantify leaf‐litter breakdown, a key ecosystem process, in streams whose riparian zones and catchments had been cleared for pasture compared with those in native deciduous woodland. The study encompassed a west–east gradient, from Ireland to Switzerland to Romania, with each of the three countries representing a distinct region. We used coarse‐mesh and fine‐mesh litter bags (10 and 0.5 mm, respectively) to assess total, microbial and, by difference, macroinvertebrate‐mediated breakdown. 3. Overall, total breakdown rates did not differ between land‐use categories, but in some regions macroinvertebrate‐mediated breakdown was higher in deciduous woodland streams, whereas microbial breakdown was higher in pasture streams. This result suggests that overall ecosystem functioning is maintained by compensatory increases in microbial activity in pasture streams. 4. We suggest that simple coefficients of breakdown rates on their own often might not be powerful enough as a bioassessment tool for detecting differences related to land‐use such as riparian vegetation removal. However, shifts in the relative contributions to breakdown by microbial decomposers versus invertebrate detritivores, as revealed by the ratios of their associated breakdown rate coefficients, showed clear responses to land‐use.  相似文献   

14.
Many mycophagous Drosophila species have adapted to tolerate high concentrations of mycotoxins, an ability not reported in any other eukaryotes. Although an association between mycophagy and mycotoxin tolerance has been established in many Drosophila species, the genetic mechanisms of the tolerance are unknown. This study presents the inter‐ and intraspecific variation in the mycotoxin tolerance trait. We studied the mycotoxin tolerance in four Drosophila species from four separate clades within the immigranstripunctata radiation from two distinct locations. The effect of mycotoxin treatment on 20 isofemale lines per species was studied using seven gross phenotypes: survival to pupation, survival to eclosion, development time to pupation and eclosion, thorax length, fecundity, and longevity. We observed interspecific variation among four species, with D. falleni being the most tolerant, followed by D. recens, D. neotestacea, and D. tripunctata, in that order. The results also revealed geographical variation and intraspecific genetic variation in mycotoxin tolerance. This report provides the foundation for further delineating the genetic mechanisms of the mycotoxin tolerance trait.  相似文献   

15.
16.
The phenology of diameter‐growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed‐source climate on diameter‐growth‐cessation timing in coast Douglas‐fir (an ecologically and economically vital tree) using high‐frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas‐fir to extend its growing season in response to climate change in the warm parts of its range.  相似文献   

17.
18.
19.
Parasites can cause severe host morbidity and threaten survival. As parasites are generally aggregated within certain host demographics, they are likely to affect a small proportion of the entire population, with specific hosts being at particular risk. However, little is known as to whether increased host mortality from parasitic causes is experienced by specific host demographics. Outside of theoretical studies, there is a paucity of literature concerning dynamics of parasite‐associated host mortality. Empirical evidence mainly focuses on short‐lived hosts or model systems, with data lacking from long‐lived wild or semi‐wild vertebrate populations. We investigated parasite‐associated mortality utilizing a multigenerational database of mortality, health, and reproductive data for over 4,000 semi‐captive timber elephants (Elephas maximus), with known causes of death for mortality events. We determined variation in mortality according to a number of host traits that are commonly associated with variation in parasitism within mammals: age, sex, and reproductive investment in females. We found that potentially parasite‐associated mortality varied significantly across elephant ages, with individuals at extremes of lifespan (young and old) at highest risk. Mortality probability was significantly higher for males across all ages. Female reproducers experienced a lower probability of potentially parasite‐associated mortality than females who did not reproduce at any investigated time frame. Our results demonstrate increased potentially parasite‐associated mortality within particular demographic groups. These groups (males, juveniles, elderly adults) have been identified in other studies as susceptible to parasitism, stressing the need for further work investigating links between infection and mortality. Furthermore, we show variation between reproductive and non‐reproductive females, with mothers being less at risk of potentially parasite mortality than nonreproducers.  相似文献   

20.
Studies of parallel evolution are seldom able to disentangle the influence of cryptic environmental variation from that of evolutionary history; whereas the unique life history of pink salmon (Oncorhynchus gorbuscha) presents an opportunity to do so. All pink salmon mature at age two and die after breeding. Hence, pink salmon bred in even years are completely reproductively isolated from those bred in odd years, even if the two lineages bred in same location. We used time series (mean = 7 years, maximum = 74 years) of paired even‐ and odd‐year populations from 36 rivers spanning over 2000 km to explore parallelism in migration timing, a trait with a strong genetic basis. Migration timing was highly parallel, being determined almost entirely by local environmental differences among rivers. Interestingly, interannual changes in migration timing different somewhat between lineages. Overall, our findings indicate very strong determinism, with only a minor contribution of contingency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号