首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
In this study, proteins specifically interacting with the 3′ untranslated region (UTR) of mRNA of the multifunctional Y-box-binding protein 1 (YB-1) were identified. One of these, hnRNP Q, was shown to specifically interact with the regulatory element (RE) in YB-1 mRNA 3′ UTR and to inhibit translation of this mRNA. Its binding to the RE was accompanied by displacement from this element of the poly(A)-binding protein (PABP), a positive regulator of YB-1 mRNA translation, and by enhanced binding of the negative YB-1 mRNA translation regulator — YB-1 itself.  相似文献   

8.
《Gene》1996,172(2):285-289
A partial integrin β1 subunit-encoding cDNA (Itgβ1) and a new heat-shock protein 70-like-encoding cDNA (Hsc73) homologous to rat Hsc73 were cloned by differential display and RT-PCR from mouse mammary gland. Their developmental regulation during pregnancy, lactation and involution is reported. The Itgβl mRNA content was stable in the first half of gestation, decreased to a minimum during lactation and increased markedly in early involution. Hsc73 gene expression was high in the first half of gestation and decreased to a minimum during lactation. The possible significance of the two observed patterns of expression is discussed.  相似文献   

9.
Plastid-targeted proteins pass through the cytosol as unfolded precursors. If proteins accumulate in the cytosol, they can form nonspecific aggregates that cause severe cellular damage. Here, we demonstrate that high levels of plastid precursors are degraded through the ubiquitin-proteasome system (UPS) in Arabidopsis thaliana cells. The cytosolic heat shock protein cognate 70-4 (Hsc70-4) and E3 ligase carboxy terminus of Hsc70-interacting protein (CHIP) were highly induced in plastid protein import2 plants, which had a T-DNA insertion at Toc159 and showed an albino phenotype and a severe defect in protein import into chloroplasts. Hsc70-4 and CHIP together mediated plastid precursor degradation when import-defective chloroplast-targeted reporter proteins were transiently expressed in protoplasts. Hsc70-4 recognized specific sequence motifs in transit peptides and thereby led to precursor degradation through the UPS. CHIP, which interacted with Hsc70-4, functioned as an E3 ligase in the Hsc70-4–mediated protein degradation. The physiological role of Hsc70-4 was confirmed by analyzing Hsc70-4 RNA interfernce plants in an hsc70-1 mutant background. Plants with lower Hsc70 levels exhibited abnormal embryogenesis, resulting in defective seedlings that displayed high levels of reactive oxygen species and monoubiquitinated Lhcb4 precursors. We propose that Hsc70-4 and CHIP mediate plastid-destined precursor degradation to prevent cytosolic precursor accumulation and thereby play a critical role in embryogenesis.  相似文献   

10.
Using a glutathione S-transferase pull-down liquid chromatography–coupled tandem mass spectrometry approach and immunoprecipitation/immunoblot analysis, we found that heat shock cognate protein 70 (Hsc70) was involved in the complex formed by atypical protein kinase Cι (PKCι) and LC3 in the esophageal cancer cell line KYSE30. Further study indicated that Hsc70 was targeted by autophagic degradation, and knockdown of PKCι down-regulated Hsc70 by promoting autophagy. PKCι knockdown sensitized cells to oxidative stress-induced apoptosis, whereas forced PKCι expression counteracted the oxidative stress-induced apoptosis via Hsc70.  相似文献   

11.
12.
13.
Hsc66, a stress-70 protein, and Hsc20, a J-type accessory protein, comprise a newly described Hsp70-type chaperone system in addition to DnaK-DnaJ-GrpE in Escherichia coli. Because endogenous substrates for the Hsc66-Hsc20 system have not yet been identified, we investigated chaperone-like activities of Hsc66 and Hsc20 by their ability to suppress aggregation of denatured model substrate proteins, such as rhodanese, citrate synthase, and luciferase. Hsc66 suppressed aggregation of rhodanese and citrate synthase, and ATP caused effects consistent with complex destabilization typical of other Hsp70-type chaperones. Differences in the activities of Hsc66 and DnaK, however, suggest that these chaperones have dissimilar substrate specificity profiles. Hsc20, unlike DnaJ, did not exhibit intrinsic chaperone activity and appears to function solely as a regulatory cochaperone protein for Hsc66. Possible interactions between the Hsc66-Hsc20 and DnaK-DnaJ-GrpE chaperone systems were also investigated by measuring the effects of cochaperone proteins on Hsp70 ATPase activities. The nucleotide exchange factor GrpE did not stimulate the ATPase activity of Hsc66 and thus appears to function specifically with DnaK. Cross-stimulation by the cochaperones Hsc20 and DnaJ was observed, but the requirement for supraphysiological concentrations makes it unlikely that these interactions occur significantly in vivo. Together these results suggest that Hsc66-Hsc20 and DnaK-DnaJ-GrpE comprise separate molecular chaperone systems with distinct, nonoverlapping cellular functions.  相似文献   

14.
15.
16.
17.
Heat shock protein (Hsp) genes are stress-related genes that activate the host immune system during infection. Hsp genes expression in fish, studied during bacterial infections, is mostly confined to Hsp70 and Hsp90. The present study is an expression analysis of seven Hsp genes: Apg2, Hsp90, Hsp70, glucose-regulated protein 78 (Grp78), heat shock cognate 70 (Hsc70), Grp75, and Hsp30 during Aeromonas hydrophila infection in rohu, Labeo rohita. Forty-eight rohu juveniles were challenged with 3 × 107 cfu bacteria per 20 g of body weight intraperitoneally. The expression of these genes was studied in infected liver, anterior kidney, and spleen tissues of rohu at different time periods: 0, 1, 3, 6, 12, 24, 48, 72 h, 7, and 15 days post-infection by qPCR. The Hsp gene modulation was greater in liver as compared to spleen and kidney tissues. Induced expression of Apg2, Hsp90, Grp78, Grp75, and Hsc70 was noticed during peak periods (3 to 24 h post-challenge) of bacterial infectivity. Hsp70 was found to be down-regulated during the process of infection. In contrast to the other six genes, Hsp30 showed a variable expression pattern in all three tissues. Grp78 was found to be the most highly (1,587-fold) expressed gene in liver at 12 h post-challenge. Further, molecular characterization of Grp78 revealed it to be a highly conserved Hsp gene, essential not only during infection but also during early developmental stages of rohu, and its expression was noticed in all organs studied except in gill tissues, which indicated its potential immune regulatory role during infection process.  相似文献   

18.
19.
20.
The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号