首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

2.
Pantropical intercontinental disjunct distribution is a major biogeographic pattern in plants, and has been explained mainly by boreotropical migration via the North Atlantic land bridges (NALB) and transoceanic long-distance dispersal (LDD), and sometimes by vicariance. However, well-resolved phylogenies of pantropical clades are still relatively few. Cissus is the largest genus of the grape family Vitaceae and shows a pantropical intercontinental disjunction with its 300 species distributed in all major tropical regions. This study constructed the phylogenetic relationships and biogeographic diversification history of Cissus, employing five plastid markers (rps16, trnL-F, atpB-rbcL, trnH-psbA and trnC-petN). The results confirmed that Cissus polyphyletic, consisting of three main clades: the core Cissus, the Cissus striata complex, and the Australian–Neotropical disjunct Cissus antarcticaC. trianae clade. The latter two clades need to be removed from Cissus to maintain the monophyly of the genus. The core Cissus is inferred to have originated in Africa and is estimated to have diverged from its relatives in Vitaceae in the late Cretaceous. It diversified in Africa into several main lineages in the late Paleocene to the early Eocene, colonized Asia at least three times in the Miocene, and the Neotropics in the middle Eocene. The NALB seems the most plausible route for the core Cissus migration from Africa to the Neotropics in the middle Eocene. Three African–Asian and two Neotropical–Australian disjunctions in Cissus s.l. are estimated to have originated in the Miocene and may be best explained by LDD.  相似文献   

3.
Aim In order to resolve disputed biogeographical histories of biota with Gondwanan continental distributions, and to assess the null hypothesis of vicariance, it is imperative that a robust geological time‐frame be established. As an example, the sudden and coincident appearance of hystricognath rodents (Rodentia: Hystricognathi) on both the African and South American continents has been an irreconcilable controversy for evolutionary biologists, presenting enigmas for both Gondwanan vicariance and Late Eocene dispersal hypotheses. In an attempt to resolve this discordance, we aim to provide a more robust phylogenetic hypothesis and improve divergence‐date estimates, which are essential to assessing the null hypothesis of vicariance biogeography. Location The primary centres of distribution are in Africa and South America. Methods We implemented parsimony, maximum‐likelihood and Bayesian methods to generate a phylogeny of 37 hystricognath taxa, the most comprehensive taxonomic sampling of this group to date, on the basis of two nuclear gene regions. To increase phylogenetic resolution at the basal nodes, these data were combined with previously published data for six additional nuclear gene regions. Divergence dates were estimated using two relaxed‐molecular‐clock methods, Bayesian multidivtime and nonparametric rate smoothing. Results Our data do not support reciprocal monophyly of African and South American lineages. Indeed, Old World porcupines (i.e. Hystricomorpha) appear to be more closely related to New World lineages (i.e. Caviomorpha) than to other Old World families (i.e. Bathyergidae, Petromuridae and Thryonomyidae). The divergence between the monophyletic assemblage of South American lineages and its Old World ancestor was estimated to have occurred c. 50 Ma. Main conclusions Our phylogenetic hypothesis and divergence‐date estimates are strongly at odds with Gondwanan‐vicariance isolating mechanisms. In contrast, our data suggest that transoceanic dispersal has played a significant role in governing the contemporary distribution of hystricognath rodents. Molecular‐clock analyses imply a trans‐Tethys dispersal event, broadly confined to the Late Cretaceous, and trans‐Atlantic dispersal within the Early Eocene. Our analyses also imply that the use of the oldest known South American rodent fossil as a calibration point has biased molecular‐clock inferences.  相似文献   

4.
The origin of biodiversity in the Neotropics predominantly stems either from Gondwana breakup or late dispersal events from the Nearctic region. Here, we investigate the biogeography of a diving beetle clade whose distribution encompasses parts of the Oriental region, the Indo‐Australian archipelago (IAA) and the Neotropics. We reconstructed a dated molecular phylogeny, inferred diversification dynamics and estimated ancestral areas under different biogeographic assumptions. For the Oriental region and the IAA, we reveal repeated and complex colonization patterns out of Australia, across the major biogeographic lines in the region (e.g. Wallace's Line). The timing of colonization events across the IAA broadly coincides with the proposed timing of the formation of major geographic features in the region. Our phylogenetic hypothesis recovers Neotropical species nested in two derived clades. We recover an origin of the group in the early Eocene about 55 million yr ago, long after the break‐up of Gondwana initiated, but before a complete separation of Australia, Antarctica and the Neotropics. When allowing an old Gondwanan ancestor, we reconstruct an intricate pattern of Gondwanan vicariance and trans‐Pacific long‐distance dispersal from Australia toward the Neotropics. When restricting the ancestral range to more plausible geological area combinations in the Eocene, we infer an Australian origin with two trans‐Pacific long‐distance dispersal events toward the Neotropics. Our results support on one hand a potential Gondwanan signature associated with regional extinctions in the Cenozoic and with Antarctica serving as a link between Australia and the Neotropics. On the other hand, they also support a trans‐Pacific dispersal of these beetles toward the Andean coast in the Oligocene.  相似文献   

5.
The moss bugs of the Peloridiidae, a small group of cryptic and mostly flightless insects, is the only living family in Coleorrhyncha (Insecta: Hemiptera). Today 37 species in 17 genera are known from eastern Australia, New Zealand, New Caledonia and Patagonia, and the peloridiids are thereby a group with a classical southern Gondwanan distribution. To explicitly test whether the present-day distribution of the Peloridiidae actually results from the sequential breakup of southern Gondwana, we provide the first total-evidence phylogenetic study based on morphological and molecular characters sampled from about 75% of recognized species representing 13 genera. The results largely confirm the established morphological phylogenetic context except that South American Peloridium hammoniorum constitutes the sister group to the remaining peloridiids. A timescale analysis indicates that the Peloridiidae began to diversify in the land mass that is today's Patagonia in the late Jurassic (153 Ma, 95% highest posterior density: 78–231 Ma), and that splitting into the three extant well-supported biogeographical clades (i.e. Australia, Patagonia and New Zealand/New Caledonia) is consistent with the sequential breakup of southern Gondwana in the late Cretaceous, indicating that the current transoceanic disjunct distributions of the Peloridiidae are best explained by a Gondwanan vicariance hypothesis.  相似文献   

6.
Evidence for Gondwanan vicariance in an ancient clade of gecko lizards   总被引:2,自引:0,他引:2  
Aim Geckos (Reptilia: Squamata), due to their great age and global distribution, are excellent candidates to test hypotheses of Gondwanan vicariance against post‐Gondwanan dispersal. Our aims are: to generate a phylogeny of the sphaerodactyl geckos and their closest relatives; evaluate previous phylogenetic hypotheses of the sphaerodactyl geckos with regard to the other major gecko lineages; and to use divergence date estimates to inform a biogeographical scenario regarding Gondwanan relationships and assess the roles of vicariance and dispersal in shaping the current distributions of the New World sphaerodactyl geckos and their closest Old World relatives. Location Africa, Asia, Europe, South America, Atlantic Ocean. Methods We used parsimony and partitioned Bayesian methods to analyse data from five nuclear genes to generate a phylogeny for the New World sphaerodactyl geckos and their close Old World relatives. We used dispersal–vicariance analysis to determine ancestral area relationships among clades, and divergence times were estimated from the phylogeny using nonparametric rate smoothing. Results We recovered a monophyletic group containing the New World sphaerodactyl genera, Coleodactylus, Gonatodes, Lepidoblepharis, Pseudogonatodes and Sphaerodactylus, and the Old World Gekkotan genera Aristelliger, Euleptes, Quedenfeldtia, Pristurus, Saurodactylus and Teratoscincus. The dispersal–vicariance analysis indicated that the ancestral area for this clade was North Africa and surrounding regions. The divergence between the New World spaherodactyl geckos and their closest Old World relative was estimated to have occurred c. 96 Myr bp . Main conclusions Here we provide the first molecular genetic phylogenetic hypothesis of the New World sphaerodactyl geckos and their closest Old World relatives. A combination of divergence date estimates and dispersal–vicariance analysis informed a biogeographical scenario indicating that the split between the sphaerodactyl geckos and their African relatives coincided with the Africa/South America split and the opening of the Atlantic Ocean. We resurrect the family name Sphaerodactylidae to represent the expanded sphaerodactyl clade.  相似文献   

7.
The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled biogeographers for more than a century. This biogeographic pattern has been hypothesized to be the result of transoceanic long‐distance dispersal, Oligocene dispersal through forested corridors, Miocene dispersal through the Arabian Peninsula or passive dispersal on the rifting Indian plate. However, it has often been difficult to pinpoint the mechanisms at play. We investigate biotic exchange between the Afrotropics and the Oriental region during the Cenozoic, a period in which geological changes altered landmass connectivity. We use Baorini skippers (Lepidoptera, Hesperiidae) as a model, a widespread clade of butterflies in the Old World tropics with a disjunct distribution between the Afrotropics and the Oriental region. We use anchored phylogenomics to infer a robust evolutionary tree for Baorini skippers and estimate divergence times and ancestral ranges to test biogeographic hypotheses. Our phylogenomic tree recovers strongly supported relationships for Baorini skippers and clarifies the systematics of the tribe. Dating analyses suggest that these butterflies originated in the Oriental region, Greater Sunda Islands, and the Philippines in the early Miocene c. 23 Ma. Baorini skippers dispersed from the Oriental region towards Africa at least five times in the past 20 Ma. These butterflies colonized the Afrotropics primarily through trans‐Arabian geodispersal after the closure of the Tethyan seaway in the mid‐Miocene. Range expansion from the Oriental region towards the African continent probably occurred via the Gomphotherium land bridge through the Arabian Peninsula. Alternative scenarios invoking long‐distance dispersal and vicariance are not supported. The Miocene climate change and biome shift from forested areas to grasslands possibly facilitated geodispersal in this clade of butterflies.  相似文献   

8.
Aim The species‐rich family of true toads (Anura: Bufonidae) has been the focus of several earlier studies investigating the biogeography of geographically widespread taxa. Herein, we employ newly developed Bayesian divergence estimate methods to investigate the biogeographical history of this group. Resulting age estimates are used to test several key temporal hypotheses including that the origin of the bufonid clade pre‐dates Gondwanan vicariance (~105 million years ago, Ma). Area cladograms are also invoked to investigate the geographical origin of the family. Location Worldwide, except the Australia–New Guinea plate, Madagascar and the Antarctic. Methods A phylogenetic hypothesis of the relationships among true toads was derived from analysis of 2521 bp of DNA data including fragments from three mitochondrial (12S, tRNAval, 16S) and two nuclear (RAG‐1, CXCR‐4) genes. Analysis of multiple, unlinked loci with a Bayesian method for estimating divergence times allowed us to address the timing and biogeographical history of Bufonidae. Resulting divergence estimates permitted the investigation of alternative vicariance/dispersal scenarios that have been proposed for true toads. Results Our area cladogram resulting from phylogenetic analysis of DNA data supports a South American origin for Bufonidae. Divergence estimates indicate that the family originated earlier than had been suggested previously (78–99 Ma). The age of the enigmatic Caribbean clade was dated to the late Palaeocene–early Eocene. A return of bufonids to the New World in the Eocene was followed by rapid diversification and secondary expansion into South America by the early Oligocene (Rupelian). Main conclusions The South American origin of Bufonidae in the Upper Cretaceous was followed by relatively rapid expansion and radiation around the globe, ending with a return to the Americas via a Eurasian/North American land bridge in the Eocene. Though the exact route of this dispersal (Beringia or North Atlantic) remains unclear, an argument is made for the less frequently invoked North Atlantic connection. The origin of the enigmatic Caribbean lineage was found to be consistent with colonization following the bolide impact at the K/T boundary. These findings provide the first, firm foundation for understanding true toad divergence times and their truly remarkable and global radiation.  相似文献   

9.
In a recent analysis of the historical biogeography of Melastomataceae, Renner, Clausing, and Meyer (2001; American Journal of Botany 88(7): 1290-1300) rejected the hypothesis of a Gondwana origin. Using a fossil-calibrated chloroplast DNA (ndhF) phylogeny, they placed the early diversification of Melastomataceae in Laurasia at the Paleocene/Eocene boundary (ca. 55 Ma) and suggested that long-distance oceanic dispersals in the Oligocene and Miocene (34 to 5 Ma) account for its range expansion into South America, Africa, and Madagascar. Their critical assumption-that oldest northern mid-latitude melastome fossils reflect tribal ages and their geographic origins-may be erroneous, however, because of the sparse fossil record in the tropics. We show that rates of synonymous nucleotide substitutions derived by the Renner et al. (2001) model are up to three times faster than most published rates. Under a Gondwana-origin model advocated here, which includes dispersals from Africa to Southeast Asia via the "Indian ark" and emphasizes filter rather than either sweepstakes dispersal or strict vicariance, rates of nucleotide substitution fall within the range of published rates. We suggest that biogeographic reconstructions need to consider the paucity of Gondwanan fossils and that frequently overlooked interplate dispersal routes provide alternatives to vicariance, boreotropical dispersal, and long-distance oceanic dispersal as explanations for the amphi-oceanic disjunctions of many tropical rain forest plants.  相似文献   

10.
The evolutionary history and classification of epiphyllous cryptogams are still poorly known. Leptolejeunea is a largely epiphyllous pantropical liverwort genus with about 25 species characterized by deeply bilobed underleaves, elliptic to narrowly obovate leaf lobes, the presence of ocelli, and vegetative reproduction by cladia. Sequences of three chloroplast regions (rbcL, trnL‐F, psbA) and the nuclear ribosomal ITS region were obtained for 66 accessions of Leptolejeunea and six outgroup species to explore the phylogeny, divergence times, and ancestral areas of this genus. The phylogeny was estimated using maximum‐likelihood and Bayesian inference approaches, and divergence times were estimated with a Bayesian relaxed clock method. Leptolejeunea likely originated in Asia or the Neotropics within a time interval from the Early Eocene to the Late Cretaceous (67.9 Ma, 95% highest posterior density [HPD]: 47.9–93.7). Diversification of the crown group initiated in the Eocene or early Oligocene (38.4 Ma, 95% HPD: 27.2–52.6). Most species clades were established in the Miocene. Leptolejeunea epiphylla and L. schiffneri originated in Asia and colonized African islands during the Plio‐Pleistocene. Accessions of supposedly pantropical species are placed in different main clades. Several monophyletic morphospecies exhibit considerable sequence variation related to a geographical pattern. The clear geographic structure of the Leptolejeunea crown group points to evolutionary processes including rare long‐distance dispersal and subsequent speciation. Leptolejeunea may have benefitted from the large‐scale distribution of humid tropical angiosperm forests in the Eocene.  相似文献   

11.
Aim Continental disjunctions in pantropical taxa have been explained by vicariance or long‐distance dispersal. The relative importance of these explanations in shaping current distributions may vary, depending on historical backgrounds or biological characteristics of particular taxa. We aimed to determine the geographical origin of the pantropical subfamily Chrysophylloideae (Sapotaceae) and the roles vicariance and dispersal have played in shaping its modern distribution. Location Tropical areas of Africa, Australasia and South America. Methods We utilized a recently published, comprehensive data set including 66 species and nine molecular markers. Bayesian phylogenetic trees were generated and dated using five fossils and the penalized likelihood approach. Distributional ranges of nodes were estimated using maximum likelihood and parsimony analyses. In both biogeographical and molecular dating analyses, phylogenetic and branch length uncertainty was taken into account by averaging the results over 2000 trees extracted from the Bayesian stationary sample. Results Our results indicate that the earliest diversification of Chrysophylloideae was in the Campanian of Africa c. 73–83 Ma. A narrow time interval for colonization from Africa to the Neotropics (one to three dispersals) and Australasia (a single migration) indicates a relatively rapid radiation of this subfamily in the latest Cretaceous to the earliest Palaeocene (c. 62–72 Ma). A single dispersal event from the Neotropics back to Africa during the Neogene was inferred. Long‐distance dispersal between Australia and New Caledonia occurred at least four times, and between Africa and Madagascar on multiple occasions. Main conclusions Long‐distance dispersal has been the dominant mechanism for range expansion in the subfamily Chrysophylloideae. Vicariance could explain South American–Australian disjunction via Antarctica, but not the exchanges between Africa and South America and between New Caledonia and Australia, or the presence of the subfamily in Madagascar. We find low support for the hypothesis that the North Atlantic land bridge facilitated range expansions at the Palaeocene/Eocene boundary.  相似文献   

12.
Dispersal is a fundamental ecological process, yet demonstrating the occurrence and importance of long‐distance dispersal (LDD) remains difficult, having rarely been examined for widespread, non‐coastal plants. To address this issue, we integrated phylogenetic, molecular dating, biogeographical, ecological, seed biology and oceanographic data for the inland Urticaceae. We found that Urticaceae originated in Eurasia c. 69 Ma, followed by ≥ 92 LDD events between landmasses. Under experimental conditions, seeds of many Urticaceae floated for > 220 days, and remained viable after 10 months in seawater, long enough for most detected LDD events, according to oceanographic current modelling. Ecological traits analyses indicated that preferences for disturbed habitats might facilitate LDD. Nearly half of all LDD events involved dioecious taxa, so population establishment in dioecious Urticaceae requires multiple seeds, or occasional selfing. Our work shows that seawater LDD played an important role in shaping the geographical distributions of Urticaceae, providing empirical evidence for Darwin's transoceanic dispersal hypothesis.  相似文献   

13.
Biogeographic dispersal is supported by numerous phylogenetic results. In particular, transoceanic dispersal, rather than vicariance, is suggested for some plant lineages despite current long distances between America and Europe. However, few studies on the biogeographic history of plants have also studied the role of diaspore syndromes in long‐distance dispersal (LDD). Species of the tribe Omphalodeae (Boraginaceae) offer a suitable study system because the species have a wide variety of diaspore traits related to LDD and different lineages conform to patched worldwide distributions on three distant continents (Europe, America and New Zealand). Our aim is to reconstruct the biogeographical history of the Omphalodeae and to investigate the role of diaspore traits favoring LDD and current geographic distributions. To this end, a time‐calibrated phylogeny with 29 of 32 species described for Omphalodeae was reconstructed using biogeographical analyses (BioGeoBEARS, Lagrange) and models (DEC and DIVA) under different scenarios of land connectivity. Character‐state reconstruction (SIMMAP) and diversification rate estimations of the main lineages were also performed. The main result is that epizoochorous traits have been the ancestral state of LDD syndromes in most clades. An early diversification age of the tribe is inferred in the Western Mediterranean during late Oligocene. Colonization of the New World by Omphalodeae, followed by fast lineage differentiation, took place sometime in the Oligocene‐Miocene boundary, as already inferred for other angiosperm genera. In contrast, colonization of remote islands (New Zealand, Juan Fernández) occurred considerably later in the Miocene‐Pliocene boundary.  相似文献   

14.
Aim  The flowering plant family Proteaceae is putatively of Gondwanan age, with modern and fossil lineages found on all southern continents. Here we test whether the present distribution of Proteaceae can be explained by vicariance caused by the break-up of Gondwana.
Location  Africa, especially southern Africa, Australia, New Zealand, South America, New Caledonia, New Guinea, Southeast Asia, Sulawesi, Tasmania.
Methods  We obtained chloroplast DNA sequence data from the rbc L gene, the rbc L- atp B spacer, and the atp B gene from leaf samples of forty-five genera collected from the field and from living collections. We analysed these data using Bayesian phylogenetic and molecular dating methods, with five carefully selected fossil calibration points to obtain age estimates for the nodes within the family.
Results  Four of eight trans-continental disjunctions of sister groups within our sample of the Proteaceae post-date the break-up of Gondwana. These involve independent lineages, two with an Africa-Australia disjunction, one with an Africa–South America disjunction, and one with a New Zealand–Australasia disjunction. The date of the radiation of the bird-pollinated Embothriinae corresponds approximately to the hypothesized date of origin of nectar-feeding birds in Australia.
Main conclusions  The findings suggest that disjunct distributions in Proteaceae result from both Gondwanan vicariance and transoceanic dispersal. Our results imply that ancestors of some taxa dispersed across oceans rather than rafting with Gondwanan fragments as previously thought. This finding agrees with other studies of Gondwanan plants in dating the divergence of Australian, New Zealand and New Caledonian taxa in the Eocene, consistent with the existence of a shared, ancestral Eocene flora but contrary to a vicariance scenario based on accepted geological knowledge.  相似文献   

15.
Abstract Most biogeographical studies propose that southern temperate faunal disjunctions are either the result of vicariance of taxa originated in Gondwana or the result of transoceanic dispersal of taxa originated after the breakup of Gondwana. The aim of this paper is to show that this is a false dichotomy. Antarctica retained a mild climate until mid‐Cenozoic and had lasting connections, notably with southern South America and Australia. Both taxa originally Gondwanan and taxa secondarily on Gondwanan areas were subjected to tectonic‐induced vicariance, and there is no need to invoke ad hoc transoceanic dispersal, even for post‐Gondwanan taxa. These different elements with circumantarctic distributions are here called ‘allochronic taxa’– taxa presently occupying the same area, but whose presence in that area does not belong to the same time period. This model allows accommodation of conflicting sources of evidence now available for many groups with circumantarctic distributions. The fact that the species from both layers are mixed up in the current biodiversity implies the need to use additional sources of evidence – such as biogeographical, palaeontological, geological and molecular – to discriminate which are the original Gondwanan and which are post‐Gondwanan elements in austral landmasses.  相似文献   

16.
Aim Cuckoo‐shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo‐Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds. Location Africa, Asia, Australo‐Papua, the Pacific, the Philippines and Wallacea. Methods We use model‐based phylogenetic methods (Mr Bayes and garli ) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes‐diva) . We also made use of a partitioned beast analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal. Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo‐Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo‐Papua to Africa involving lineages within the core Campephagidae radiation. Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo‐Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo‐Papua to Africa.  相似文献   

17.
The remarkable fauna of Australia evolved in isolation from other landmasses for millions of years, yet understanding the evolutionary history of endemic avian lineages on the continent is confounded by the ability of birds to disperse over geographical barriers even after vicariance events. The Plains‐wanderer Pedionomus torquatus (Charadriiformes) is an enigmatic, predominantly sedentary, quail‐like bird that occurs exclusively in sparse native grasslands of southeastern Australia. It is the only known species of its family (Pedionomidae), and its closest relatives are the South American seedsnipes (Thinocoridae). Here we describe a further representative of this lineage, Oligonomus milleri gen. et sp. nov., from the Late Oligocene of South Australia (26–24 Ma), which pre‐dates the earliest record of P. torquatus by c. 22 Ma and attests to the presence of this lineage during Australia's period of isolation (50–15 Ma). Based on the morphology of the coracoid and the palynological record, we propose that O. milleri and P. torquatus were ecologically disparate taxa and that, similar to coeval marsupials, O. milleri inhabited well‐wooded habitats, suggesting that the preference for grassland in the extant P. torquatus and thinocorids is likely to be convergent and not ancestral. The speciation event leading to the evolution of the extant Plains‐wanderer was probably triggered by the spread of grasslands across Australia in the Late Miocene–Pliocene, which this record pre‐dates. The presence of a pedionomid in the Late Oligocene of Australia strengthens the hypothesis of a Gondwanan divergence of the lineages giving rise to Thinocoridae and Pedionomidae.  相似文献   

18.
The grasses (Poaceae) are the fifth most diverse family of angiosperms, including 800 genera and more than 10 000 species. Few phylogenetic studies have tried to investigate palaeo‐biogeographical and palaeo‐ecological scenarios that may have led to present‐day distribution and diversity of grasses at the family level. We produced a dated phylogenetic tree based on combined plastid DNA sequences and a comprehensive sample of Poaceae. Furthermore, we produced an additional tree using a supermatrix of morphological and molecular data that included all 800 grass genera so that ancestral biogeography and ecological habitats could be inferred. We used a likelihood‐based method, which allows the estimation of ancestral polymorphism in both biogeographical and ecological analyses for large data sets. The origin of Poaceae was retrieved as African and shade adapted. The crown node of the BEP + PACCMAD clade was dated at 57 Mya, in the early Eocene. Grasses dispersed to all continents by approximately 60 million years after their Gondwanan origin in the late Cretaceous. PACCMAD taxa adapted to open habitats as early as the late Eocene, a date consistent with recent phytolith fossil data for North America. C4 photosynthesis first originated in Africa, at least for Chloridoideae in the Eocene at c. 30 Mya. The BEP clade members adapted to open habitats later than PACCMAD members; this was inferred to occur in Eurasia in the Oligocene. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 543–557.  相似文献   

19.
Aim Early diversification of allodapine bees occurred in Africa c. 50 Ma. They are most abundant in sub‐Saharan Africa and Australia, and one of the oldest phylogenetic divergences in the tribe involves a split between an African + Malagasy clade and an Australian clade. The historical biogeographical scenario for this has been highly problematic, entailing an Eocene dispersal from Africa to Australia, followed by an unresolved, and apparently rapid, set of bifurcations leading to the Australian ‘exoneurine’ genera. Here we use an expanded taxon set of Australian species to explore the timing and historical biogeography of the exoneurine radiation. Location Australia, Africa, Madagascar. Methods One nuclear gene (F2 copy of elongation factor 1α) and two mitochondrial genes (cytochrome c oxidase subunit I and cytochrome b) were sequenced for 33 Australian exoneurine species from all five genera found on the continent, as well as for an additional 37 species from all non‐parasitic genera in the remainder of the tribe. We used Bayesian inference analyses to study phylogenetic topology and penalized likelihood analyses to infer key dates of divergence within the tribe. We also used lineage‐through‐time (LTT) analyses and Bayesian analyses to explore the tempo of radiations and biogeographical history of the exoneurines. Results Results from the phylogenetic analyses were congruent with previous studies, indicating a single colonization event c. 34 Ma, too late for Gondwanan vicariance models, and too early for a Laurasian dispersal route. In contrast to earlier studies, we show that this colonization event did not result in an ancient rapid radiation. However, LTT patterns indicated a rapid radiation of the temperate‐adapted genera Exoneura and Brevineura, but not of the xeric‐adapted genus Exoneurella, from 10 to 6 Ma. Main conclusions Our results indicate a trans‐oceanic dispersal event from Africa to Australia, most likely via Antarctica, with an accelerated diversification of temperate‐adapted lineages during the major Late Miocene event referred to as the ‘Hill Gap’. This is the first study to link radiations in Australian bee faunal elements to changing climate, and differs from many other plant and insect phylogenetic studies by showing increased radiation of temperate clades, rather than xeric clades, with increasing aridification of Australia.  相似文献   

20.
The genus Apsilochorema Ulmer, 1907 is unique in the family Hydrobiosidae Ulmer, being widely distributed in the Palaearctic, Oriental and Australian Regions. All other 49 genera in the family, except the New World Atopsyche Banks, 1905, are confined to a single biogeographical Region. This unique distribution has independently stimulated researchers to formulate competing hypotheses about the biogeographical history of the genus. Molecular sequence data from mitochondrial cytochrome oxidase I (COI) and nuclear cadherin (CAD) genes of Apsilochorema species from the Oriental and Australian areas were analysed phylogenetically. The results retain a monophyletic Apsilochorema, which forms the sistergroup to the other genera in the subfamily Apsilochorematinae. The results from the biogeographical analyses dispute the earlier assumptions of an Oriental or northern Gondwana origin for the genus, revealing unambiguously an initial Australian radiation of the ancestral Apsilochorema with a subsequent dispersal into the Oriental Region. All but one of the Apsilochorema species occurring on the Pacific islands had an Oriental ancestor. The exception is the sistergroup to the New Caledonian species, which is found in both Australia and Oriental Regions. The molecular dating analysis, using a relaxed clock model, indicates that the genus Apsilochorema is about 36.4 MY old and that it dispersed from Australia into the Oriental Region about 28.3 Ma. It also gives an estimate of the approximate ages of the dispersals into New Caledonia to about 15.3 Ma; to the Solomon Islands at about 16.2 Ma; to the Fiji Islands at about 16.1 Ma; and to the Vanuatu Islands at about 5.4 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号