首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel evolution of similar phenotypes provides strong evidence for the operation of natural selection. Where these phenotypes contribute to reproductive isolation, they further support a role for divergent, habitat‐associated selection in speciation. However, the observation of pairs of divergent ecotypes currently occupying contrasting habitats in distinct geographical regions is not sufficient to infer parallel origins. Here we show striking parallel phenotypic divergence between populations of the rocky‐shore gastropod, Littorina saxatilis, occupying contrasting habitats exposed to either wave action or crab predation. This divergence is associated with barriers to gene exchange but, nevertheless, genetic variation is more strongly structured by geography than by ecotype. Using approximate Bayesian analysis of sequence data and amplified fragment length polymorphism markers, we show that the ecotypes are likely to have arisen in the face of continuous gene flow and that the demographic separation of ecotypes has occurred in parallel at both regional and local scales. Parameter estimates suggest a long delay between colonization of a locality and ecotype formation, perhaps because the postglacial spread of crab populations was slower than the spread of snails. Adaptive differentiation may not be fully genetically independent despite being demographically parallel. These results provide new insight into a major model of ecologically driven speciation.  相似文献   

2.
Populations of the marine gastropod Littorina saxatilis from exposed rocky shores of NW Spain provide one of the few putative cases of sympatric ecological speciation. Two ecotypes with large differences in shell morphology and strong assortative mating are living at different vertical levels of the shore separated by a few meters. It has been hypothesized that shell size is the main determinant for the reproductive isolation observed between the ecotypes, and that several shell shape traits are subject to divergent natural selection and are responsible for the adaptation of each ecotype to its respective habitat. Using embryos extracted from wild females we obtain estimates of genetic variation for shell size and shape and compare them with those from neutral molecular markers. Estimates of heritability are significantly larger for the ecotype found in the upper shore than for that in the lower shore, in concordance with a similar result observed for heterozygosity of neutral markers. The large genetic differentiation between ecotypes for the shell traits, contrasting the smaller close to neutral differentiation between populations of the same ecotype, supports the implication of the traits in adaptation.  相似文献   

3.
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell‐thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator‐mediated selection on local snail populations.  相似文献   

4.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

5.
6.
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave‐adapted and crab‐adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double‐digested restriction‐associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%–15.1% of their divergent loci with a third more‐distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid‐shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.  相似文献   

7.
8.
Planktivorous fish can exert strong top‐down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three‐spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low‐diversity brackish water zooplankton community using a 16‐day mesocosm experiment. The experiment was conducted on a small‐bodied spring zooplankton community in high‐nutrient conditions, as well as a large‐bodied summer community in low‐nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small‐bodied community with high predation pressure and no dispersal or migration, the selective particulate‐feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter‐feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large‐bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.  相似文献   

9.
Species with restricted gene flow often show trait-shifts from one type of environment to another. In those rock-dwelling marine gastropods that lack larval dispersal, size generally decreases in wave-exposed habitats reducing risk of dislodgement, while increases in less exposed habitats to resist crab-crushing. In Littorina fabalis, however, snails of moderately exposed shores are generally much larger (11–14 mm) than snails of sheltered shores (5–8 mm). Observations from the White Sea (where crabs are not present) indicate that in the absence of crabs snails are small (6–7 mm) in both habitats. We assumed that the optimal size for L. fabalis in the absence of crabs is less than 8 mm, and thus that increased size in moderately exposed habitats in areas with crabs might be a response to crab predation. In a crab-rich area (Sweden) we showed that crab predation is an important mortality factor for this snail species in both sheltered and moderately exposed habitats. In sheltered habitats, snails were relatively more protected from crab-predation when dwelling on their habitual substrate, fucoid algae, than if experimentally tethered to rocks below the algae. This showed that algae function as snail refuges. Snail dislodgement increased, however, with wave exposure but tethering snails in moderately exposed habitats showed that large snails survived equally well on rocks under the algae as in the canopy of the algae. Thus in sheltered habitats a small snail size is favored, probably due to life-history reasons, while increased risk of being dislodged from the algae refuges promotes a large size in moderately exposed habitats. This study shows an example of selection of a trait depends on complex interactions of different factors (life-history optimization, crab predation, wave induced dislodgement and algal refuges).  相似文献   

10.
A laboratory experiment was conducted with the marine gastropod Littorina littorea from three different sites in Long Island Sound to test for inducible responses to the non‐native predatory crab Hemigrapsus sanguineus. Individuals of L. littorea did not exhibit decreased shell growth in response to increased predation risk, which differs from the response seen in other species of Littorina. However, snails did exhibit slower growth in response to reduced food availability, as seen in other gastropods. Surprisingly, snails from two sites exhibited differences between the crab‐exposed and reduced food‐availability treatments in how they remodeled the thickness of different microstructural layers of shell material in apical parts of the shell. Although individuals of L. littorea did not show the typical shell thickening response seen in other gastropods, they did show differences among populations in remodeling their shell. This underlies the importance of examining how the shell is constructed and remodeled in studies of inducible defenses in gastropods, as well as the importance of examining animals from multiple populations.  相似文献   

11.
Two ecotypes of a marine intertidal snail (Littorina saxatilis), living at different microhabitats and shore levels, have evolved in sympatry and in parallel across the Galician rocky shore. These ecotypes differ in many traits (including size) due to differential adaptation. They meet, mate assortatively, and partially hybridize at the mid shore where the two microhabitats overlap. The partial sexual isolation observed is claimed to be a side‐effect of the size differences between ecotypes combined with a size assortative mating found in most populations of this species. We investigated this hypothesis using three complementary experimental approaches. First, we investigated which of the different shell variables contributed most to the variation in individual sexual isolation in the field by using two new statistics developed for that purpose: (1) pair sexual isolation and (2) ri, which is based on the Pearson correlation coefficient. We found that size is the most important trait explaining the sexual isolation and, in particular, the males appear to be the key sex contributing to sexual isolation. Second, we compared the size assortative mating between regions: exposed rocky shore populations from north‐westwern Spain (showing incomplete reproductive isolation due to size assortative mating) and protected Spanish and Swedish populations (showing size assortative mating but not reproductive isolation between ecomorphs). Most of the variation in size assortative mating between localities was significantly explained by the within‐population level of variation on size. Third, we performed a laboratory male choice experiment, which further suggested that the choice is made predominantly on the basis of size. These results confirm the mechanism proposed to explain the sexual isolation in the Galician hybrid zone and thus support this case as a putative example of parallel incipient speciation. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 513–526.  相似文献   

12.
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab‐adapted ecotypes that exhibit partial reproductive isolation from wave‐adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co‐association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes—consistent with models of adaptation with gene flow—but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co‐association of loci during ecological speciation with ongoing gene flow.  相似文献   

13.
When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.  相似文献   

14.
There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small‐ and large‐brained individuals in six semi‐natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large‐brained females had 13.5% higher survival compared to small‐brained females, whereas the brain size had no discernible effect on male survival. We suggest that large‐brained females have a cognitive advantage that allows them to better evade predation, whereas large‐brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size.  相似文献   

15.
Previous studies on the reproductive biology of littorinid snails have focused on rocky shore species, investigating how these gastropods can achieve maximal reproductive success, as well as on processes of sexual selection. This study documented differences in the reproductive traits of two mangrove‐dwelling littorinids, Littoraria ardouiniana and L. melanostoma, in Hong Kong. Reproductive activity of both species was most intense during the summer months. Mating pairs of the two species generally occurred in the tree canopies. Few false mating pairs (same sex or heterospecific pairs: <10%) were recorded, and members of both species showed size‐assortative mating. Littoraria ardouiniana had a shorter reproductive season but a higher intensity of mating and higher seasonal fecundity, than did L. melanostoma. Members of both species showed bi‐lunar periodicities of egg or larval release, synchronized with spring tides. Fecundity showed a strong positive relationship with body size in L. ardouiniana, but not in L. melanostoma. Females of L. ardouiniana released entire broods of larvae in a single brief event, whereas females of L. melanostoma released fewer eggs over 1–8 d. Release of larvae in L. ardouiniana involved a series of short bursts and was much faster than the trickle release of eggs in L. melanostoma. The contrasting reproductive traits in these two species represent different strategies to optimize reproductive success in mangrove habitats.  相似文献   

16.
Whereas many plasticity studies demonstrate the importance of inducible defences among prey, far fewer investigate the potential role of inducible offences among predators. Here we ask if natural differences in a snail's shell hardness can induce developmental changes to a predatory crab's claw size. To do this, we fed Littorina obtusata snails from either thick- or thin-shelled populations to captive European green crabs Carcinus maenas. The crabs' shell-breaking behaviour dominated among those fed thin-shelled snails, whereas crabs fed thick-shelled snails mostly winkled flesh through the shell opening without damaging the shell itself (a.k.a. aperture-probing behaviour). Significantly, the size of crab crusher claws grew in proportion to the frequency of shell-crushing behaviour and, for a same shell-crushing frequency, crabs fed thick-shelled snails grew larger crusher claws than those fed thin-shelled snails after two experimental moults. Diet and behaviour had no effect on the growth of the smaller cutter claws of same individuals, providing good evidence that allometric changes to crusher claws were indeed a result of differential use while feeding. Findings indicate that both predation habits and claw sizes are affected by green crabs' diet, supporting the hypothesis that prey-induced phenotypic plasticity contributes to earlier accounts of shell-claw covariance between this predator and its Littorina prey in the wild.  相似文献   

17.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

18.
Ecosystems host multiple coexisting predator species whose interactions may strengthen or weaken top–down control of grazers. Grazer populations often exhibit size‐structure, but the nature of multiple predator effects on suppression of size‐structured prey has seldom been explicitly considered. In a southeastern US salt‐marsh, we used both field (additive design) and mesocosm (additive‐substitutive design) experiments to test the independent and combined effects of two species of predatory crab on the survival and predator‐avoidance behavior (i.e. a non‐consumptive effect) of both juveniles and adults of a dominant grazing snail. Results showed: 1) juvenile snails were more vulnerable to predation; 2) consumptive impacts of predators were hierarchically nested, i.e. the larger predator consumed both juvenile and adult snails, while the smaller‐bodied predator consumed only juvenile snails; 3) there were no emergent multiple predator effects on snail consumption; and 4) non‐consumptive effects differed from consumptive effects, with only the large predator inducing predator‐avoidance behavior of individuals within either snail ontogenetic class. The smaller predator therefore played a functionally redundant trophic role across the prey classes considered, augmenting and potentially stabilizing trophic regulation of juvenile snails. Meanwhile, the larger predator played a complementary and functionally unique role by both expanding the size‐spectrum of prey trophic regulation and non‐consumptively altering prey behavior. While our study suggests that nestedness of consumptive interactions determined by predator and prey body sizes may allow prediction of the functional redundancy of particular predator species, it also shows that traits beyond predator body size (e.g. habitat domain) may be required to predict potentially cascading non‐consumptive effects. Future studies of multiple predators (and predator biodiversity) should continue to strive towards greater realism by incorporating not only size‐structured prey, but also other aspects of resource and environmental heterogeneity typical of natural ecosystems.  相似文献   

19.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

20.
Steep clinal transitions in one or several inherited characters between genetically distinct populations are usually referred to as hybrid zones. Essentially two different mechanisms may maintain steep genetic clines. Either selection acts against hybrids that are unfit over the entire zone due to their mixed genetic origin (endogenous selection), or hybrids and parental types attain different fitness values in different parts of the cline (exogenous selection). Survival rate estimates of hybrids and parental forms in different regions of the cline may be used to distinguish between these models to assess how the cline is maintained. We used reciprocal transplants to test the relative survival rates of two parental ecotypes and their hybrids over microscale hybrid zones in the direct-developing marine snail Littorina saxatilis (Olivi) on the rocky shores of Galicia, Spain. One of the parental forms occupies upper and the other lower shores, and the hybrids are found at various proportions (1–38%) along with both parental forms in a midshore zone a few meters wide. The survival rate over one month was 39-52% of the native ecotype on upper shores, but only 2-8% for the lower-shore ecotype. In contrast, only 4-8% of the upper-shore ecotype but 53% of large (> 6 mm) and 8% of small (3-6 mm) native lower-shore ecotype survived in the lower shores. In the midshores, both the two parental ecotypes and the hybrids survived about equally well. Thus there is a considerable advantage for the native ecotypes in the upper and lower shores, while in the hybrid zone none of the morphs, hybrids included, are favored. This indicates that the dimorphism of L. saxatilis is maintained by steep cross-shore selection gradients, thus supporting the selection-gradient model of hybrid zones. We performed field and laboratory experiments that suggest physical factors and predation as important selective agents. Earlier studies indicate assortative mating between the two ecotypes in the midshore. This is unexpected in a hybrid zone maintained by selection gradients, and it seems as if the reproductive barrier compresses the hybrid zone considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号