共查询到20条相似文献,搜索用时 15 毫秒
1.
Postmating barriers to hybridization between an island’s native eucalypts and an introduced congener
Matthew J. Larcombe Robert C. Barbour Rebecca C. Jones René E. Vaillancourt Brad M. Potts 《Tree Genetics & Genomes》2016,12(2):26
We evaluate postmating barriers to hybridization between an exotic eucalypt and a group of native congeners on the island of Tasmania. We aimed to better understand the basis of reproductive isolation between the species, glean insights into the evolution of isolating mechanisms, and inform genetic risk management. Compatibility between the exotic plantation species Eucalyptus nitens (pollen parent) and 18 native Tasmanian taxa was assayed using experimental crossing for 17 taxa (13,458 flowers pollinated to produce 1058 female × male cross combinations), and previous data for one species. Compatibility was assessed in terms of F1 hybrid production, as well as F1 hybrid survival and growth after 5 years. This data was combined with measurements of style length, and genetic distance from E. nitens to each maternal species, in order to determine the importance of a sequence of prezygotic and postzygotic barriers. We found that the early-acting barrier of style length (prezygotic) had the strongest isolating effect, while later-acting (postzygotic) barriers, affecting early-age growth and survival, contributed little to reproductive isolation. Style length alone explained 46 % of the variation in hybridization rate. Conversely, there was no significant relationship between genetic distance and prezygotic or postzygotic compatibility in these closely related species. This pattern is consistent with selection driving the rapid evolution of prezygotic barriers, while drift-like-processes lead to the more gradual evolution of intrinsic barriers. Although other premating and postmating barriers clearly contribute, our results highlight the important role of early-acting postmating barriers in preventing gene flow from exotic E. nitens plantations. 相似文献
2.
Anthropogenic changes to habitat are a global phenomenon and the impact of these changes may act in tandem to cause loss of
biodiversity. One major global change is the introduction of invasive species. In order to determine whether other human impacts
might correlate with populations of invaders, we examined the habitat correlates of distribution, persistence and reproduction
of a global invader, the American bullfrog (Rana catesbeiana). We then compared these correlates with those of a threatened, native congener, the California red-legged frog (Rana draytonii). We found striking differences between the two species in response to habitat fragmentation and degradation. Our work suggests
that human alteration of habitat, in particular the hydrology of freshwater sites and through building roads, favors this
invasive species across the landscape. 相似文献
3.
As invasive species are key threats to ecosystem structure and function, it is essential to understand the factors underlying
their success. Enigmatically, mutualistic organisms are often successful in colonizing novel environments even though they
commonly persist only through intricate relationships with other species. Mutualistic ants, for example, protect aphids from
natural enemies while collecting carbohydrate–rich honeydew. To facilitate this interaction, ants have evolved aggressive
responses to aphid alarm pheromone emissions. As invasive and native mutualists have not evolved together, however, it is
unclear if this form of cross-species communication exists between these two parties thereby facilitating these novel interactions.
We address this hypothesis by assessing whether the invasive Argentine ant, Linepithema humile, responds to native poplar aphid, Chaitophorus populicola, alarm signals. Here, we show that interspecific signalling does exist in this newly established mutualistic interaction.
Argentine ant workers exhibit increased aggression and double the number of visits to an aphid colony after an aphid alarm
signal is emitted. We suggest that pre-adaptations may facilitate the emergence of mutualistic associations between many invasive
and native species. 相似文献
4.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also
decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive
plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive
shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At
each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis
that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to
influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination. 相似文献
5.
What determines the number of alien species in a given region? ‘Native biodiversity’ and ‘human impact’ are typical answers to this question. Indeed, studies comparing different regions have frequently found positive relationships between number of alien species and measures of both native biodiversity (e.g. the number of native species) and human impact (e.g. human population). These relationships are typically explained by biotic acceptance or resistance, i.e. by influence of native biodiversity and human impact on the second step of the invasion process, establishment. The first step of the invasion process, introduction, has often been ignored. Here we investigate whether relationships between number of alien mammals and native biodiversity or human impact in 43 European countries are mainly shaped by differences in number of introduced mammals or establishment success. Our results suggest that correlation between number of native and established mammals is spurious, as it is simply explainable by the fact that both quantities are linked to country area. We also demonstrate that countries with higher human impact host more alien mammals than other countries because they received more introductions than other countries. Differences in number of alien mammals cannot be explained by differences in establishment success. Our findings highlight importance of human activities and question, at least for mammals in Europe, importance of biotic acceptance and resistance. 相似文献
6.
Sebastián R. Zeballos Melisa A. Giorgis Ana M. Cingolani Marcelo Cabido Juan I. Whitworth‐Hulse Diego E. Gurvich 《Austral ecology》2014,39(8):984-991
In this study we assessed the water transport strategies and the abundance of alien and native tree species at a regional scale in Córdoba Mountains, Central Argentina. The aims of this study were: (i) to analyse whether alien and native tree species show divergent water transport strategies; and (ii) to explore whether species abundances of alien and natives are associated with specific trait attributes. Eight alien species and 12 native species were recorded in 50 complete vascular plant vegetation relevés. Water transport strategies were assessed through the following functional traits: minimum leaf water potential, potential water content of wood, effective leaf area, leaf area per sapwood area and wood density. Also, resource use strategies were assessed throughout the measurement of specific leaf area. We found that alien species had a higher efficiency in water transport (i.e. higher minimum leaf water potential and lower wood density values) and faster resource acquisition and use (higher specific leaf area values) than native species. We did not find evidence suggesting that the relative abundance of species was associated to water transport strategies and faster resource acquisition and use. Alien species seem to differ from natives in specific functional attributes that are absent in the resident community and might allow aliens to use more resources and at a higher rate than native species. Finally, our results show the potential of a trait‐based predictive framework for alien species, and the possible effects on ecosystem functions. 相似文献
7.
Lorinda S. Bullington Mathew T. Seidensticker Nathan Schwab Philip W. Ramsey Kate Stone 《Ecology and evolution》2021,11(23):17160
Ecological theory suggests that the coexistence of species is promoted by the partitioning of available resources, as in dietary niche partitioning where predators partition prey. Yet, the mechanisms underlying dietary niche partitioning are not always clear. We used fecal DNA metabarcoding to investigate the diets of seven nocturnal insectivorous bird and bat species. Low diet overlap (2%–22%) supported resource partitioning among all species. Differences in diet corresponded with species identity, prey detection method, and foraging behavior of predators. Insects with ultrasonic hearing capabilities were consumed significantly more often by birds than bats, consistent with an evolved avoidance of echolocating strategies. In turn, bats consumed a greater proportion of noneared insects such as spruce budworms. Overall, our results suggest that evolutionary interactions among bats and moths translate to dietary niche partitioning and coexistence among bats and nocturnal birds. 相似文献
8.
Donald M. Waller Erika L. Mudrak Kathryn L. Amatangelo Sarah M. Klionsky David A. Rogers 《Biological invasions》2016,18(12):3465-3480
Do invasive plant species act more as “passengers” or drivers of ecological change in native plant communities? Snapshot studies based on correlations at the site scale ignore longer-term dynamics and variation in how particular invaders affect particular native species. We analyzed patterns of co-occurrence between three invading species (Alliaria petiolata, Lonicera x bella, and Rhamnus cathartica) and 70 native plant species in 94 southern Wisconsin forests at two scales to test four hypotheses. Surveys at these sites in the 1950s and again in the 2000s allowed us to assess how initial plant diversity and site conditions affected subsequent patterns of invasion. Sites with more native species in the 1950s experienced fewer invasions of Lonicera and Rhamnus. However, this result may reflect the fact that more fragmented habitat patches supported both fewer species in the 1950s and more invasions. At the site-level, few negative correlations exist between invasive and native species’ abundances. Sites with higher Alliaria densities in the 2000s, however, support fewer native species and lower populations of several declining natives. Rhamnus-invaded sites support lower populations of two increasing species. Association (C-score) analyses detect more associations and more negative associations at the 1 m2 scale than at the site scale. Most strong associations between invasive and increasing native species are positive while those with declining natives are often negative. Species restricted to specialized habitats rarely co-occur with invaders. Alliaria has more negative associations at fragmented sites where it is more abundant and invasions may be older. Fine-scale invasive-native associations were stronger, easier to detect, and less consistent than those detectable at the site-level. Thus, screening large numbers of local associations using observational data may allow us to identify particular invasive-native interactions worth further investigation. Although invading plants sometimes act as passive passengers, increasing in tandem with certain native plants in response to disturbed fragmented habitats, they may also contribute to the declines we observe in many native species. Monitoring invasions would allow us to assess whether local associations serve to predict subsequent invasive species impacts. 相似文献
9.
10.
- Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects.
- By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators.
- Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore.
- Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
11.
CECILE LE LANN YANNICK OUTREMAN JACQUES J. M. VAN ALPHEN LILIANE KRESPI JEAN‐SEBASTIEN PIERRE JOAN VAN BAAREN 《Ecological Entomology》2008,33(6):691-700
Abstract 1. In solitary parasitoids, several species can exploit the same host patch and competition could potentially be a strong selective agent as only one individual can emerge from a host. In cereal crops, Aphidius rhopalosiphi and A. ervi share the grain aphid Sitobion avenae as host. 2. The present work studied foraging strategies of both species on patches already exploited by the other species. The study analysed larval competition in multi‐parasitised hosts and compared the foraging behaviour of females with and without previous experience. 3. It was found that A. ervi wins larval competition three times more often than A. rhopalosiphi. Both species spent less time on patches exploited by a heterospecific than on unexploited ones. When they foraged on heterospecifically exploited patches, experienced females induced less mortality in aphids than inexperienced ones. 4. Although A. rhopalosiphi is a specialist on cereal aphids and is the most abundant species due to its early appearance in the season, S. avenae is still a profitable host for A. ervi, because: (i) A. rhopalosiphi leaves patches partially exploited, (ii) A. ervi wins larval competition in three out of four multi‐parasitised hosts, and (iii) A. ervi is only slightly deterred by the cornicular secretions of the host and can thus easily parasitise hosts. 相似文献
12.
Understanding how competition from invasive species and soil conditions individually and interactively affect native performance will increase knowledge of invasion dynamics and can be used to improve the success of restoration plans. This study, conducted in Reno NV, USA, uses a two-phase plant?Csoil feedback experiment coupled with a target-neighbor competition design to examine the individual and interactive effects of both soil conditions and invasive neighbors on native performance. Study species include invasive species (Bromus tectorum and Agropyron cristatum) and native species (Elymus elymoides and Pseudoroegneria spicata). Results indicate that both plant performance and competitive interactions were influenced by species-specific soil conditioning. Specifically, invasive B. tectorum generated a larger competitive effect on natives than invasive A. cristatum; however, only A. cristatum conditioned soil in a manner that increased competitive effects of conspecifics on natives. Native P. spicata was relatively unaffected by soil conditioning and conversely, E. elymoides was strongly affected by soil conditioning. Few previous studies have examined soil conditioning and the interaction of soil conditioning and neighbor effects that both are potentially important mechanisms in structuring plant communities and influencing plant invasion. 相似文献
13.
Do invasive alien plants benefit more from global environmental change than native plants? 下载免费PDF全文
Yanjie Liu Ayub M. O. Oduor Zhen Zhang Anthony Manea Ifeanna M. Tooth Michelle R. Leishman Xingliang Xu Mark van Kleunen 《Global Change Biology》2017,23(8):3363-3370
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future. 相似文献
14.
The evolution of increased competitive ability hypothesis predicts that introduced plants that are long liberated from their natural enemies may lose costly herbivore defense, enabling them to reallocate resources previously spent on defense to traits that increase competitive superiority. We tested this prediction by comparing the competitive ability of native St John's wort ( Hypericum perforatum) from Europe with introduced St John's wort from central North America where plants have long grown free of specialist herbivores, and introduced plants from western North America where plants have been subjected to over 57 years of biological control. Plants were grown in a greenhouse with and without competition with Italian ryegrass ( Lolium multiflorum). St John's wort from the introduced range were not better interspecific competitors than plants from the native range. The magnitude of the effect of ryegrass on St John's wort was similar for introduced and native genotypes. Furthermore, introduced plants were not uniformly larger than natives; rather, within each region of origin there was a high variability in size between populations. Competition with ryegrass reduced the growth of St John's wort by >90%. In contrast, St John's wort reduced ryegrass growth <10%. These results do not support the contention that plants from the introduced range evolve greater competitive ability in the absence of natural enemies. 相似文献
15.
Abstract. Spatial distribution patterns of alien plant species were compared with those of native species on a windward slope of Mt. Haleakala (3055 m). Oceanic islands are considered susceptible to biological invasion, and this study numerically tested this circumstantial evidence with the following questions: Are all habitats equally susceptible; and, do successful invaders have wider realized niches than natives? The mountain slope consists of three distinct altitudinal bioclimatic zones (hot moist lowland, wet montane cloud, and cool arid high-altitude zones). Ordination indicated that alien species' ranges and population expansions were clustered in the lowland and high-altitude zones. The lowland zone had been subjected to natural canopy dieback, and the high-altitude zone to grazing by domestic and feral ungulates. By contrast, the montane cloud forest was relatively intact in terms of number and cover of native species. Thus, susceptibility to alien invasion clearly differed among zones, and the primary causes seemed to be the obvious disturbance factors. The mean ecological range along the altitude-rainfall gradient was significantly (P < 0.05) greater for native than for alien species in most life-form groups. The reasons for the greater number of climate generalists among the natives vs. the range-restricted aliens appear to be related to: (1) the pre-alien condition with a depauperate flora which allowed for ‘ecological release’ of successful native colonizers, and (2) the climatic pre-adaptation of alien invaders which restricts them from penetrating over a broader spectrum of climatic zones in a floristic matrix subjected to increasing interspecific competition. 相似文献
16.
Do alien plants on Mediterranean islands tend to invade different niches from native species? 总被引:1,自引:0,他引:1
In order to understand invasions, it is important to know how alien species exploit opportunities in unfamiliar ecosystems. For example, are aliens concentrated in niches under-exploited by native communities, or widely distributed across the ecological spectrum? To explore this question, we compared the niches occupied by 394 naturalized alien plants with a representative sample from the native flora of Mediterranean islands. When niche structure was described by a functional group categorization, the distribution of native and alien species was remarkably similar, although “succulent shrubs” and “trees with specialized animal pollination mechanisms” were under-represented in the native species pool. When niche structure was described by Grime’s CSR strategy, the positioning of aliens and natives differed more strongly. Stress-tolerance was much rarer amongst the aliens, and a competitive strategy was more prevalent at the habitat level. This pattern is similar to previous findings in temperate Europe, although in those regions it closely reflects patterns of native diversity. Stressed environments are much more dominant in the Mediterranean. We discuss a number of factors which may contribute to this difference, e.g., competitive and ruderal niches are often associated with anthropogenic habitats, and their high invasibility may be due partly to introduction patterns rather than to a greater efficiency of aliens at exploiting them. Thus far, the reasons for invasion success amongst introduced species have proved difficult to unravel. Despite some differences, our evidence suggests that alien species naturalize across a wide range of niches. Given that their ecologies therefore vary greatly, one may ask why such species should be expected to share predictable traits at all? 相似文献
17.
18.
Do competitive intraguild interactions affect space and habitat use by small carnivores in a forested landscape? 总被引:3,自引:0,他引:3
Complex interactions such as interference competition and predation, including intraguild predation, are now recognized as important components in animal community structure. At the lower end of a guild, weasels may be highly affected by other guild members due to small body size in relation to other predators. In 2000 and 2001, we radio-collared 24 ermines Mustela erminea and 25 long-tailed weasels M. frenata in 2 areas that differed in abundance of guild members. We tested the hypothesis that when faced with an increased density of other guild members, weasels would modify space and habitat use to reduce the risk of predation associated with encounters involving guild members. We predicted that weasels would increase use of specific habitats (such as refuges) to reduce encounter rates in the presence of a greater number of guild members. Because M. erminea is smaller than M. frenata and thus better able to take advantage of small rodent burrows as refuges from predators and as feeding grounds, we also predicted that M. frenata would show a stronger response to a higher abundance of guild members than M. erminea . Results were consistent with our predictions. Faced with an increased abundance of guild members, M. frenata showed increased habitat selectivity and reduced activity levels, which resulted in increased daily travel distances and increased home ranges. Mustela erminea responded to an increased abundance of guild members through reduced use of preferred habitat which M. frenata already occupied. The contrasting pattern of habitat selection observed between the 2 mustelid species suggested cascading effects, whereby large-predator pressure on M. frenata relaxed pressure of M. frenata on M. erminea . Our results draw attention to the likelihood that competitive intraguild interactions play a facilitating role in M. erminea – M. frenata coexistence. 相似文献
19.
Identifying and understanding the processes that underlie the observed variation in lifespan within and among species remains one of the central areas of biological research. Questions directed at how, at what rate and why organisms grow old and die link disciplines such as evolutionary ecology to those of cell biology and gerontology. One process now thought to have a key role in ageing is the pattern of erosion of the protective ends of chromosomes, the telomeres. Here, we discuss what is currently known about the factors influencing telomere regulation, and how this relates to fundamental questions about the relationship between lifestyle and lifespan. 相似文献
20.
Sabrina Kumschick Christina Alba Ruth A. Hufbauer Wolfgang Nentwig 《Diversity & distributions》2011,17(4):663-672
Aim Species introduced to an area outside of their native range are often thought to have higher impact in this new area. We examined whether this is really the case in mammals and birds and to what extent. In particular, we explored how impacts of alien species vary in relationship to invader identity and type of impact. Location Global. Methods We conducted a thorough review of the literature to compare the impact of alien European mammals and birds in their native and invaded ranges. Based on a series of environmental and economic impact scores, we ordered species along a continuum from weak invaders, which have lower impact in the invaded range, to strong invaders, which have higher impact in the invaded range. Results We found that nearly 80% of the mammals are strong invaders, but only half of the birds. Members of these two classes also affect their communities in different ways; birds more often have an impact via hybridization, whereas mammals have stronger impacts via herbivory, transmission of diseases to wildlife and their effects on agriculture, livestock and forestry. Main conclusions Generally, mammals and birds have different impacts when invading new regions. Although there are some bird species that are strong invaders, these remain the exception among birds, whereas most mammals increase their impact in the invaded range. This study provides a deeper insight into patterns of impact in the invaded range. 相似文献