首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

2.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosyntem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - PLM paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error  相似文献   

3.
The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 °C for 20 min and to temperature 42 °C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 °C for 72 h. The net photosynthetic rates (PN) and the fluorescence ratios Fv/Fm were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 °C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO2 assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 °C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.  相似文献   

4.
Freezing and high temperature thresholds of photosystem 2 (PS2), ice formation and frost and heat damage were measured in leaves of evergreen subalpine plants under conditions of naturally low (winter) to high (summer) PS2 efficiencies (FV/FM). The temperature‐dependent change in basic Chl fluorescence (F0) (T‐F0) technique that is usually used to assess the high temperature threshold of PS2 in a new approach was applied to test freezing temperature thresholds of PS2. T‐F0 curves (+5 °C to ?10 °C at 2 K h?1) revealed a significant, sudden increase in F0 on extracellular ice formation (?4.0 or ?5.5 °C). The rise in F0 was recorded 0.3–0.6 K below ice nucleation (10–20 min later) and was produced by freeze dehydration of cells. The rise in F0 was not caused by frost damage, as during winter LT50 was lower than ?27 °C and not by formation of ice on the leaf surface. Hence, F0 measurements during freezing are a useful tool to distinguish between surface ice and extracellular ice inside the leaf tissue which cannot be differentiated by other ice‐detecting methods. PS2 efficiency significantly affected the shape of the high temperature T‐F0 curves (20–65 °C at 1 K min?1). Under FV/FM >0.6, two F0 maxima were recorded. The fast rise phase to the first F0 maximum corresponded with tissue heat damage (LT50: 46.9–54.3 °C). The second F0 maximum occurred at leaf temperatures between 55 and 60 °C. Under FV/FM <0.2 only, the second F0 maximum was detectable. Lack of awareness of the missing F0 maximum would lead to an overestimation of the PS2 high temperature threshold by >10 K; hence, under low FV/FM, it cannot be determined by the T‐F0 technique.  相似文献   

5.
Coffee is the most traded commodity in the world, and Brazil is its largest producer. Coffee leaf rust, caused by the biotrophic fungus Hemileia vastatrix, is the most important coffee disease, reducing coffee yield by 35–50%. This study aimed to use the ratio of variable and maximum fluorescence of dark‐adapted tissue (Fv/Fm) as a parameter to differentiate presymptomatic tissue from healthy tissue during disease development in plants sprayed with pyraclostrobin and epoxiconazole after 4 days postinoculation. Visual severity was considered as an indicative of apparent disease and true severity as an indicative of both apparent and non‐apparent disease. There was a significant linear relationship between the areas of true severity and visual severity, and for each additional unit in the visual severity, there was an increase of 1.53 units on the true severity. For the epoxiconazole and pyraclostrobin treatments, coffee leaf rust symptoms decreased according to both visual and Fv/Fm images. Pustules on the leaves sprayed with epoxiconazole were smaller in size than those on the leaves of non‐sprayed plants but bigger than those sprayed with pyraclostrobin. The reduction in Fv/Fm values at the pustule epicentres present on the leaves of plants sprayed with epoxiconazole, and pyraclostrobin was greater than those of the non‐sprayed plants. This finding was expected and reflects the importance of these fungicides in prohibiting the progress of coffee leaf rust. The photosynthetic capacity of Coffea arabica was affected by H. vastatrix infection, and the Fv/Fm parameter was able to show this effect before the visual symptoms were noticed.  相似文献   

6.
The present study was undertaken to test for the hypothesis that the rate of development in the capacity for photosynthetic electron transport per unit area (Jmax;A), and maximum carboxylase activity of Rubisco (Vcmax;A) is proportional to average integrated daily quantum flux density (Qint) in a mixed deciduous forest dominated by the shade‐intolerant species Populus tremula L., and the shade‐tolerant species Tilia cordata Mill. We distinguished between the age‐dependent changes in net assimilation rates due to modifications in leaf dry mass per unit area (MA), foliar nitrogen content per unit dry mass (NM), and fractional partitioning of foliar nitrogen in the proteins of photosynthetic electron transport (FB), Rubisco (FR) and in light‐harvesting chlorophyll‐protein complexes (Vcmax;AMANMFR; Jmax;AMANMFB). In both species, increases in Jmax;A and Vcmax;A during leaf development were primarily determined by nitrogen allocation to growing leaves, increases in leaf nitrogen partitioning in photosynthetic machinery, and increases in MA. Canopy differences in the rate of development of leaf photosynthetic capacity were mainly controlled by the rate of change in MA. There was only small within‐canopy variation in the initial rate of biomass accumulation per unit Qint (slope of MA versus leaf age relationship per unit Qint), suggesting that canopy differences in the rate of development of Jmax;A and Vcmax;A are directly proportional to Qint. Nevertheless, MA, nitrogen, Jmax;A and Vcmax;A of mature leaves were not proportional to Qint because of a finite MA in leaves immediately after bud‐burst (light‐independent component of MA). MA, leaf chlorophyll contents and chlorophyll : N ratio of mature leaves were best correlated with the integrated average quantum flux density during leaf development, suggesting that foliar photosynthetic apparatus, once developed, is not affected by day‐to‐day fluctuations in Qint. However, for the upper canopy leaves of P. tremula and for the entire canopy of T. cordata, there was a continuous decline in N contents per unit dry mass in mature non‐senescent leaves on the order of 15–20% for a change of leaf age from 40 to 120 d, possibly manifesting nitrogen reallocation to bud formation. The decline in N contents led to similar decreases in leaf photosynthetic capacity and foliar chlorophyll contents. These data demonstrate that light‐dependent variation in the rate of developmental changes in MA determines canopy differences in photosynthetic capacity, whereas foliar photosynthetic apparatus is essentially constant in fully developed leaves.  相似文献   

7.
Abstract

Effects of drought and exogenous glycine betaine and proline on Photosystem II (PSII) photochemistry were studied in barley leaves under heat stress induced by exposing them to 45°C for 10 min. Polyphasic fluorescence transient (OJIP) was used to evaluate PSII photochemistry in leaves treated with either glycine betaine or proline, combined or not with heat treatment. A distinct K step in the fluorescence transient OJIP appeared in control leaves, indicating an inactivation of the oxygen evolving complex (OEC). Drought stress and exogenous glycine betaine and proline modified the shape of the OJIP curve of leaves heated at 45°C and the K step was not as pronounced. Increased thermostability of PSII may be associated with the resistance of OEC and increased energy connectivity between PSII units. The thermostability of PSII was also reflected by a lower decrease in maximum quantum yield of primary photochemistry (?Po = F V/F M) and performance index (PI). Exogenous application of glycine betaine or proline can play an important role in enhancing plant stress tolerance and may help reduce effects of environmental stresses.  相似文献   

8.
Pumpkin (Cucurbita pepo L.) leaves in which chloroplast protein synthesis was inhibited with lincomycin were exposed to strong photoinhibitory light, and changes in FO, FM, FV/FM and in the amount of functional Photosystem II (O2 evolution induced by saturating single-turnover flashes) were monitored during the high-light exposure and subsequent dark or low-light incubation. In the course of the photoinhibitory illumination, FM, FV/FM and the amount of functional PS II declined continuously whereas FO dropped rapidly to some extent and then slowly increased. If the experiments were done at room temperature, termination of the photoinhibitory illumination resulted in partial relaxation of the FV/FM ratio and in an increase in FO and FM. The relaxation was completed in 10–15 min after short-term (15 min) photoinhibitory treatment but continued 30–40 min if the exposure to high light was longer than 1 h. No changes in the amount of functional PS II accompanied the relaxation of FV/FM in darkness or in low light, in the presence of lincomycin. Transferring the leaves to low temperature (+4°C) after the room-temperature illumination (2 h) completely inhibited the relaxation of FV/FM. Low temperature did not suppress the relaxation if the photoinhibitory illumination had also been done at low temperature. The results indicate that illumination of lincomycin-poisoned pumpkin leaves at room temperature does not lead to accumulation of a reversibly photoinactivated intermediate.Abbreviations FO, FM chlorophyll fluorescence with all reaction centres open or closed, respectively - FV variable fluorescence (FV=FM–FO) - LHC Light-harvesting complex - PS II Photosystem II - QA, QB primary and secondary quinone electron acceptors of PS II, respectively - qNE, qNT, qNI non-photochemical quenching due to high-energy state, state transition or photoinhibition, respectively  相似文献   

9.
Chlorophyll a fluorescence (ChlF) and leaf morphology were assessed in two sites in Europe (Kaltenborn, Germany, and Satakunta, Finland) within a forest diversity experiment. Trees at Satakunta, planted in 1999, form a stratified canopy, while in Kaltenborn the trees are 7 years old, with no apparent canopy connection among broadleaf species. The following ChlF parameters from measured OJIP transient curves were examined: FV/FM (a proxy for maximum quantum yield); ΨEo (a proxy for efficiency in transferring an electron from reduced QA to the electron transport chain); I‐P phase (a proxy for efficiency of reducing final acceptors beyond PSI); and PItot (total performance index for potential energy conservation from photons absorbed by PSII to reduction of PSI end acceptors). At Satakunta FV/FM and ΨEo in Betula pendula were higher in monocultures and lower in mixed plots, perhaps due to increasing light availability in mixed plots, which can induce photoinhibition. The opposite trend was observed in Picea abies, which was shaded in mixed plots. At Kaltenborn FV/FM decreased in Fagus sylvatica and P. abies in mixed plots due to competition both above‐ and belowground. At Satakunta LMA increased in B. pendula leaves with increasing species richness. Leaf area of ten leaves was reduced in F. sylvatica in mixed plots at Kaltenborn. By up‐scaling the overall fluorescence response to plot level (PItot_plot), a significant positive correlation with tree diversity was found at Kaltenborn, but not at Satakunta. This could suggest that competition/facilitation processes in mixed stands play a significant role in the early stages of forest establishment, but then tend to be compensated in more mature stands.  相似文献   

10.
Recovery (at 20° C) of spinach (Spinacia oleracea L.) leaf sections from photoinhibition of photosynthesis was monitored by means of the fluorescence parameter FV/FM of intact leaf tissue and of PSII-driven electron-transport activity of isolated thylakoids. Different degrees of photoinactivation of PSII were obtained by preillumination in ambient air (at 4 or 20° C), CO2-free air or at low and high O2 levels (2 or 41 %) in N2. The kinetics of recovery exhibited two distinct phases. The first phase usually was completed within about 20-60 min and was most pronounced after preillumination in low O2. The slow phase proceeded for several hours leading to almost complete reactivation of PSII. Preincubation of the leaves with streptomycin (SM), which inhibits chloroplast-encoded protein synthesis, inhibited the slow recovery phase only, indicating the dependence of this phase on resynthesis of the reaction-centre protein, D1. The fast recovery phase remained largely unaffected by SM. Both phases were strongly but not totally dependent on irradiation of the leaf with low light. When SM was absent, net degradation of the D1 protein could neither be detected upon photoinhibitory irradiation nor during following incubation of the leaf sections in low light or darkness. In the presence of SM, net D1 degradation was seen and tended to increase with O2 concentration during photoinhibition treatment. Based on these data, we suggest that photoinactivation of PSII in vivo occurs in at least two steps. From the first step, reactivation appears possible in low light without D1 turnover (fast recovery phase). Action of oxygen then may lead to a second step, in which the D1 protein is affected and reactivation requires its removal and replacement (slow phase).Abbreviations Chl chlorophyll - F0, FM and FV initial, maximum total and maximum variable chlorophyll fluorescence yield, respectively - PFD photon flux density - SM streptomycin We thank Professor P. Böger (Department of Plant Physiology and Biochemistry, University of Konstanz, Germany) for a gift of D1-specific antibodies. The paper contains part of the thesis work of J.L. The study was supported by the Deutsche Forschungs-gemeinschaft (SFB 189).  相似文献   

11.
Under severe water stress, leaf wilting is quite general in higher plants. This passive movement can reduce the energy load on a leaf. This paper reports an experimental test of the hypothesis that leaf wilting movement has a protective function that mitigates against photoinhibition of photosynthesis in the field. The experiments exposed cotton (Gossypium hirsutum L.) to two water regimes: water-stressed and well-watered. Leaf wilting movement occurred in water-stressed plants as the water potential decreased to −4.1 MPa, reducing light interception but maintaining comparable quantum yields of photosystem II (PS II; Yield for short) and the proportion of total PS II centers that were open (qP). Predrawn F v/F m (potential quantum yield of PS II) as an indicator of overnight recovery of PS II from photoinhibition was higher than or similar to that in well-watered plants. Compared with water-stressed cotton leaves for which wilting movement was permitted, water-stressed cotton leaves restrained from such movement had significantly increased leaf temperature and instantaneous CO2 assimilation rates in the short term, but reduced Yield, qP, and F v/F m. In the long term, predrawn F v/F m and CO2 assimilation capacity were reduced in water-stressed leaves restrained from wilting movement. These results suggest that, under water stress, leaf wilting movement could reduce the incident light on leaves and their heat load, alleviate damage to the photosynthetic apparatus due to photoinhibition, and maintain considerable carbon assimilation capacity in the long term despite a partial loss of instantaneous carbon assimilation in the short term.  相似文献   

12.
S. Somersalo  G. H. Krause 《Planta》1989,177(3):409-416
The effects of moderate light at chilling temperature on the photosynthesis of unhardened (acclimated to +18° C) and hardened (cold-acclimated) spinach (Spinacea oleracea L.) leaves were studied by means of fluorescence-induction measurements at 20° C and 77K and by determination of quantum yield of O2 evolution. Exposure to 550 mol photons·m-2·s-1 at +4° C induced a strong photoinhibition in the unhardened leaves within a few hours. Photoinhibition manifested by a decline in quantum yield was characterized by an increase in initial fluorescence (F o) and a decrease in variable fluorescence (F v) and in the ratio of variable to maximum fluorescence (F V/F M), both at 77K and 20° C. The decline in quantum yield was more closely related to the decrease in the F V/F M ratio measured at 20° C, as compared with F V/F M at 77K. Quenching of the variable fluorescence of photosystem II was accompanied by a decline in photosystem-I fluorescence at 77K, indicating increased thermal de-excitation of pigments as the main consequence of the light treatment. All these changes detected in fluorescence parameters as well as in the quantum yield of O2 evolution were fully reversible within 1–3 h at a higher temperature in low light. The fast recovery led us to the view that this photoinhibition represents a regulatory mechanism protecting the photosynthetic apparatus from the adverse effects of excess light by increasing thermal energy dissipation. Long-term cold acclimation probably enforces other protective mechanisms, as the hardened leaves were insensitive to the same light treatment that induced strong inhibition of photosynthesis in unhardened leaves.Abbreviations F 0 initial fluorescence - F M maximum fluorescence - F V variable fluorescence (F M-F 0 - PFD photon flux density - PS photosystem  相似文献   

13.
Photoinhibition of photosynthesis in willow leaves under field conditions   总被引:7,自引:0,他引:7  
Erling Ögren 《Planta》1988,175(2):229-236
Chlorophyll fluorescence of leaves of a willow (Salix sp.) stand grown in the field in northern Sweden was measured on several occasions during the growing season of 1987. For leaves that received mostly full daylight, the F V/F P ratio declined roughtly 15% in the afternoon on cloudless days in July (F P is the fluorescence at the peak of the induction curve obtained at the prevailing air temperature after 45 min of dark adaptation, and F V is variable fluoresence, F V=F P-F O, where F O is minimal fluorescence). There was no decrease in the F V/F P ratio on cloudy days, while the effect was intermediate on changeable days. In view of this light dependence, together with the fact that the decline in the F V/F P ratio was paralleled with an equal decline in the corresponding fluorescence ratio F V/F M at 77K, and a similar decline in the maximum quantum yield of O2 evolution, it is suggested that the decline in the F V/F P ratio represents a damage in photosyntem II attributable to photoinhibition. Recovery of the F V/F P ratio in dim light following a decline on a cloudless day took 7–16 h to go to completion; the F V/F P ratio was fully restored the following morning. When all active leaves of a peripheral shoot were compared, the F V/F P ratio in the afternoon of a day of bright light varied greatly from leaf to leaf, though the majority of leaves showed a decline. This variation was matched by a pronounced variation in intercepted photon flux density. When leaves developed in the shade were exposed to full sunlight by trimming of the stand an increased sensitivity to photoinhibition was observed as compared to peripheral leaves. The present study indicates that peripheral willow shoots experienced in the order of 10–20% photoinhibition during an appreciable part of their life. This occurred even though the environmental conditions were within the optimal range of photosynthesis and growth.Abbreviations and symbols F O minimum fluorescence - F P fluorescence at the peak of the induction curve obtained at normal ambient temperatures - F V variable fluorescence - F M maximum fluorescence obtained at 77K - PPFD photosynthetic photon flux density  相似文献   

14.
Grapevine plants (Vitis vinifera L. cv. Silvaner) were cultivated under shaded conditions in the absence of UV radiation in a greenhouse, and subsequently placed outdoors under filters transmitting natural radiation, or screening out the UV-B (280 to 315 nm), or screening out the UV-A (315 to 400 nm) and the UV-B spectral range. All conditions decreased maximum chlorophyll fluorescence (FM) and increased minimum chlorophyll fluorescence (F0) from dark-adapted leaves; however, with increasing UV, FM quenching was stimulated but increases in F0 were reduced. The FV/FM ratio (where FV=FM-F0) was clearly reduced by visible radiation (VIS): UV-B caused a moderate extra-reduction in FV/FM. Exposure of leaves (V. vinifera L. cv. Bacchus) to UV or VIS lamps quenched the FM to similar extents; further, UV-B doses comparable to the field, quenched F0. A model was developed to describe how natural radiation intensities affect PS II and thereby change leaf fluorescence. Fitting theory to experiment was successful when the same FM yield for UV- and VIS-inactivated PS II was assumed, and for lower F0 yields of UV- than for VIS-inactivated PS II. It is deduced, that natural UV can produce inactivated PS II exhibiting relatively high FV/FM. The presence of UV-inactivated PS II is difficult to detect by measuring FV/FM in leaves. Hence, relative concentrations of intact PS II during outdoor exposure were derived from FM. These concentrations, but not FV/FM, correlated reasonably well with CO2 gas exchange measurements. Consequently, PS II inhibition by natural UV could be a main factor for UV inhibition of photosynthesis.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
In order to fully understand the adaptive strategies of young leaves in performing photosynthesis under high irradiance, leaf orientation, chloroplast pigments, gas exchange, as well as chlorophyll a fluorescence kinetics were explored in soybean plants. The chlorophyll content and photosynthesis in young leaves were much lower than that in fully expanded leaves. Both young and fully expanded leaves exhibited down-regulation of the maximum quantum yield (FV/FM) at noon in their natural position, no more serious down-regulation being observed in young leaves. However, when restraining leaf movement and vertically exposing the leaves to 1200 μmol m−2 s−1 irradiance, more pronounced down-regulation of FV/FM was observed in young leaves; and the actual photosystem II (PS II) efficiency (ФPSII) drastically decreased with the significant enhancement of non-photochemical quenching (NPQ) and ‘High energy’ quenching (qE) in young leaves. Under irradiance of 1200 μmol m−2 s−1, photorespiration (Pr) in young leaves measured by gas exchange were obviously lower, whereas the ratio of photorespiration/gross photosynthetic rate (Pr/Pg) were higher than that in fully expanded leaves. Compared with fully expanded leaves, young leaves exhibited higher xanthophyll pool and a much higher level of de-epoxidation components when exposure to high irradiance. During leaf development, the petiole angle gradually increased all the way. Especially, the midrib angle decreased with the increasing of irradiance in young leaves; however, no distinct changes were observed in mature leaves. The changes of leaf orientation greatly reduced the irradiance on young leaf surface under natural positions. In this study, we suggested that the co-operation of leaf angle, photorespiration and thermal dissipation depending on xanthophyll cycle could successfully prevent young leaves against high irradiance in field.  相似文献   

16.
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F M) and the variable (F V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl chlorophyll - PFD photon flux area density - PSI, PSII photosystem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - leaf water potential C.I.W.-D.P.B. Publication No. 775  相似文献   

17.
The occurrence of photoinhibition of photosynthesis in leaves of a willow canopy was examined by measuring the chlorophyll-a fluorescence ratio of F V/F M (FM is the maximum fluorescence level of the induction curve, and FV is the variable fluorescence, F V=F MF 0, where F0 is the minimal fluorescence). The majority of the leaves situated on the upper parts of peripheral shoots showed an afternoon inhibition of this ratio on clear days. This was the consequence of both a decrease in F M and a rise in F O. In the same leaves the diurnal variation in intercepted photosynthetic photon flux density (PPFD) was monitored using leaf-mounted sensors. Using the multivariate method, partial least squares in latent variables, it is shown that the dose of PPFD, integrated and linearly weighted over the last 6-h period, best predicts photoinhibition. Photoinhibition occurred even among leaves that did not intercept PPFDs above 1000 mol·m–2·s–1. Exposure of leaves to a standard photoinhibitory treatment demonstrated that the depression in the F V/F M ratio was paralleled by an equal depression in the maximal quantum yield of CO2 uptake and a nearly equal depression in the rate of bending (convexity) of the light-response curve of CO2 uptake. As a result, the rate of net photosynthesis is depressed over the whole natural range of PPFD. By simulating the daily course in the rate of net photosynthesis, it is estimated that in the order of one-tenth of the potential carbon gain of peripheral willow shoots is lost on clear days as a result of photoinhibition. This applies to conditions of optimal temperatures. Photoinhibition is even more pronounced at air temperatures below 23° C, as judged from measurements of the FV/FM ratio on clear days: the afternoon inhibition of this ratio increased in a curvilinear manner from 15% to 25% with a temperature decrease from 23° to 14° C.Abbreviations and Symbols FO minimum fluorescence - FV variable fluorescence - FM maximum fluorescence - PLS partial least squares in latent variables - PPFD photosynthetic photon flux density - VPD water vapour-pressure deficit This study was supported by the Swedish Natural Science Research Council. We are indebted to Dr. Jerry Leverenz (Department of Plant Physiology, University of Umeå, Sweden) for guidance with the modelling of the photosynthesis data.  相似文献   

18.
Photoinhibition of Photosystem II (PSII) in lincomycin-treated leaves begins as a first-order reaction, but fluorescence measurements have suggested that after prolonged illumination, the number of active PSII centres stabilizes to 15–20% of control. The stabilization has been interpreted to indicate that photoinhibited PSII centres protect the remaining active centres against photoinhibition (Lee, Hong and Chow, Planta 212:332–342, 2001). In an attempt to study the mechanism of this protection, we measured the reaction kinetics of photoinhibition in lincomycin-treated pumpkin (Cucurbita pepo L.) and pepper (Capsicum annuum L.) leaves in vivo. The light-saturated rate of PSII oxygen evolution, assayed from thylakoids and isolated from the treated leaves, was used as a direct measure of the number of remaining active PSII centres, and the fluorescence parameters F V/F M and (F V/F M)/F 0 (=1/F 0 − 1/F M) were measured for comparison. To our surprise, no stabilization of PSII activity was observed and photoinhibition followed first-order kinetics until PSII activity had virtually declined to zero. A series of in vitro experiments was carried out to see whether stabilization of PSII activity occurs if a particular combination of light intensity and wavelength range is applied, or if a specific PSII preparation is used as experimental material. The results of the in vitro experiments confirmed the in vivo result about persistent first-order kinetics. We conclude that photoinhibited PSII centres offer no measurable protection against photoinhibition.  相似文献   

19.
In the 20th century, annual mean temperatures in the European Alps rose by almost 1 K and are predicted to rise further, increasing the impact of temperature on alpine plants. The role of light in the heat hardening of plants is still not fully understood. Here, the alpine dwarf shrub Vaccinium gaultherioides was exposed in situ to controlled short‐term heat spells (150 min with leaf temperatures 43–49°C) and long‐term heat waves (7 days, 30°C) under different irradiation intensities. Lethal leaf temperatures (LT50) were calculated. Low solar irradiation [max. 250 photosynthetic photon flux density (PPFD)] during short‐term heat treatments mitigated the heat stress, shown by reduced leaf tissue damage and higher Fv/Fm (potential quantum efficiency of photosystem 2) than in darkness. The increase in xanthophyll cycle activity and ascorbate concentration was more pronounced under low light, and free radical scavenging activity increased independent of light conditions. During long‐term heat wave exposure, heat tolerance increased from 3.7 to 6.5°C with decreasing mean solar irradiation intensity (585–115 PPFD). Long‐term exposure to heat under low light enhanced heat hardening and increased photosynthetic pigment, dehydroascorbate and violaxanthin concentration. In conclusion, V. gaultherioides is able to withstand temperatures of around 50°C, and its heat hardening can be enhanced by low light during both short‐ and long‐term heat treatment. Data showing the specific role of light during short‐ and long‐term heat exposure and the potential risk of lethal damage in alpine shrubs as a result of rising temperature are discussed.  相似文献   

20.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号