首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome‐level reference genome of P. euphratica (v2.0) using single‐molecule sequencing and chromosome conformation capture (Hi‐C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60‐fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high‐quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.  相似文献   

2.
Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A Na+/H+ antiporter gene was successfully isolated from this species through RACE cloning, and named PeSOS1. The isolated cDNA was 3665 bp long and contained a 3438 bp open reading frame that was predicted to encode a 127-kDa protein with 12 hypothetical transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The amino acid sequence of this PeSOS1 gene showed 64% identity with the previously isolated SOS1 gene from the glycophyte Arabidopsis thaliana. The level of protein expressed by PeSOS1 in the leaves of P. euphratica was significantly up-regulated in the presence of high (200 mM) concentrations of NaCl, while the mRNA level in the leaves remained relatively constant. Immunoanalysis suggested that the protein encoded by PeSOS1 is localized in the plasma membrane. Expression of PeSOS1 partially suppressed the salt sensitive phenotypes of the EP432 bacterial strain, which lacks the activity of the two Na+/H+ antiporters EcNhaA and EcNhaB. These results suggest that PeSOS1 may play an essential role in the salt tolerance of P. euphratica and may be useful for improving salt tolerance in other tree species. Yuxia Wu and Nan Ding contributed equally to this work.  相似文献   

3.
Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the ‘positive-inside’ rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed.  相似文献   

4.
Populus euphratica has been used as a plant model to study resistance against salt and osmotic stresses, with recent studies having characterized the tonoplast and the plasma membrane ATPases, and two Na+/H+ antiporters, homologs of the Arabidopsis tonoplast AtNHX1, were published in databases. In the present work we show that P. euphratica suspension-cultured cells are highly tolerant to high salinity, being able to grow with up to 150 mM NaCl in the culture medium without substantial modification of the final population size when compared to the control cells in the absence of salt. At a salt concentration of 300 mM, cells were unable to grow but remained highly viable up to 17 days after subculture. The addition of a 1-M-NaCl pulse to unadapted cells did not promote a significant loss in cell viability within 48 h. In tonoplast vesicles purified from cells cultivated in the absence of salt and from salt-stressed cells, vacuolar H+-pyrophosphatase (V-H+-PPase) seemed to be the primary tonoplast proton pump; however, there appears to be a decrease in V-H+-PPase activity with exposure to NaCl, in contrast to the sodium-induced increase in the activity of vacuolar H+-ATPase (V-H+-ATPase). Despite reports that in P. euphratica there is no significant difference in the concentration of Na+ in the different cell compartments under NaCl stress, in the present study, confocal and epifluorescence microscopic observations using a Na+-sensitive probe showed that suspension-cultured cells subject to a salt pulse accumulated Na+ in the vacuole when compared with control cells. Concordantly, a tonoplast Na+/H+ exchange system is described whose activity is upregulated by salt and, indirectly, by a salt-mediated increase of V-H+-ATPase activity.  相似文献   

5.
Multiplex PCR amplification of microsatellites has significantly increased the throughput and decreased the costs of genotyping. We have developed two highly polymorphic microsatellite multiplexes for Populus euphratica, the only tree species found in desert regions of Western China and adjacent Central Asian countries. The first of these multiplex kits comprises an eight‐Plex of genomic SSRs (gSSRs) obtained from published databases. The second comprises an eight‐plex of newly designed EST‐SSRs (eSSRs) based on expressed sequence tags for P. euphratica. Both kits were tested on a sample of 170 individuals from four populations. The gSSRs exhibited slightly more polymorphism than the eSSRs. The new multiplex protocols yielded consistent results in the hands of multiple researchers, demonstrating their robustness. The 16 loci used in the kits exhibited a high transferability rate (82.0%) in eight other poplar species belonging to five different sections of the genus. Both kits should therefore be useful for further investigations of population genetics in P. euphratica and related species. Our results indicate that it is essential to follow recently established recommendations when developing microsatellite markers, including verifying the amplification efficiency, detecting null alleles and carefully measuring error rates.  相似文献   

6.
Yang Y  Zhang F  Zhao M  An L  Zhang L  Chen N 《Plant cell reports》2007,26(2):229-235
The plasma membrane (PM) vesicles from Populus euphratica (P. euphratica) callus were isolated to investigate the properties of the PM H+-ATPase. An enrichment of sealed and oriented right-side-out PM vesicles was demonstrated by measurement of the purity and orientation of membrane vesicles in the upper phase fraction. Analysis of pH optimum, temperature effects and kinetic properties showed that the properties of the PM H+-ATPase from woody plant P. euphratica callus were consistent with those from herbaceous species. Application of various thiol reagents to the reaction revealed that reduced thiol groups were essential to maintain the PM H+-ATPase activity. In addition, there was increased H+-ATPase activity in the PM vesicles when callus was exposed to NaCl. Western blotting analysis demonstrated an enhancement of H+-ATPase content in NaCl-treated P. euphratica callus compared with the control.  相似文献   

7.
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.  相似文献   

8.
Despite its economic importance as a bioenergy crop and key role in riparian ecosystems, little is known about genetic diversity and adaptation of the eastern cottonwood (Populus deltoides). Here, we report the first population genomics study for this species, conducted on a sample of 425 unrelated individuals collected in 13 states of the southeastern United States. The trees were genotyped by targeted resequencing of 18,153 genes and 23,835 intergenic regions, followed by the identification of single nucleotide polymorphisms (SNPs). This natural P. deltoides population showed low levels of subpopulation differentiation (FST = 0.022–0.106), high genetic diversity (θW = 0.00100, π = 0.00170), a large effective population size (Ne ≈ 32,900), and low to moderate levels of linkage disequilibrium. Additionally, genomewide scans for selection (Tajima's D), subpopulation differentiation (XTX), and environmental association analyses with eleven climate variables carried out with two different methods (LFMM and BAYENV2) identified genes putatively involved in local adaptation. Interestingly, many of these genes were also identified as adaptation candidates in another poplar species, Populus trichocarpa, indicating possible convergent evolution. This study constitutes the first assessment of genetic diversity and local adaptation in P. deltoides throughout the southern part of its range, information we expect to be of use to guide management and breeding strategies for this species in future, especially in the face of climate change.  相似文献   

9.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

10.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

11.
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.  相似文献   

12.
A putative vacuolar Na+/H+ antiporter gene (SsNHX1) was isolated from the halophyte Salsola soda using the rapid amplification of cDNA ends method. Highly conserved regions of plant vacuolar Na+/H+ antiporter, including amiloride-binding domain, NHE (Na+/H+ exchange) domain, and 12 transmembrane segments, were found in the deduced amino acid sequence of SsNHX1. Multiple alignments of vacuolar Na+/H+ antiporters showed that SsNHX1 shared high identity with other plant vacuolar Na+/H+ antiporters. Phylogenetic relationship analysis indicated that SsNHX1 was clustered into the vacuolar Na+/H+ antiporter group. Taken together, these results suggest that SsNHX1 is a new member of the vacuolar Na+/H+ antiporter family. The effective expression of SsNHX1 in alfalfa (Medicago sativa L.) enhanced the salt tolerance of transgenic alfalfa which could grow in high concentrations of NaCl (up to 400 mM) over 50 days. This was the highest level of salt tolerance reported in transgenic plants. A further analysis of the physiological characteristics of transgenic and wild-type plants, including the Na+ and K+ contents, superoxide dismutase activity, the rate of electrolyte leakage, and the proline content, showed that large amounts of Na+ in the cytoplasm of leaves were transported into vacuoles by the exogenous Na+/H+ antiporter, which averted the toxic effects of Na+ to the cell of transgenic alfalfa.  相似文献   

13.
14.
Zhou S  Zhang Z  Tang Q  Lan H  Li Y  Luo P 《Biotechnology letters》2011,33(2):375-380
AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, was introduced into tobacco genome via Agrobacterium tumefaciens-mediated transformation to evaluate the role of vacuolar energy providers in plants salt stress response. Compared to the wild-type plants, over-expression of AtNHX1 increased salt tolerance in the transgenic tobacco plants, allowing higher germination rates of seeds and successful seedling establishment in the presence of toxic concentrations of NaCl. More importantly, the induced Na+/H+ exchange activity in the transgenic plants was closely correlated to the enhanced activity of vacuolar H+-ATPase (V-ATPase) when exposed to 200 mM NaCl. In addition, inhibition of V-ATPase activity led to the malfunction of Na+/H+ exchange activity, placing V-ATPase as the dominant energy provider for the vacuolar Na+/H+ antiporter AtNHX1. V-ATPase and vacuolar Na+/H+ antiporter thus function in an additive or synergistic way. Simultaneous overexpression of V-ATPase and vacuolar Na+/H+ antiporter might be appropriate for producing plants with a higher salt tolerance ability.  相似文献   

15.
Populus euphratica Oliv. is a main tree species that forms natural riparian forests in arid and semi-arid areas from Morocco to the Ordos Plateau. This study is designed to clarify the forest structure and dynamics of P. euphratica and to elucidate the ecological mechanisms sustaining riparian forests under unreliable environmental conditions. This study was conducted in a P. euphratica forest of the Ejina Oasis in Inner Mongolia, China, which is a hyperarid area. According to their tree size distribution, P. euphratica forests can be grouped into juvenile, mature, and overmatured stages. Almost all large P. euphratica showed dieback. The regeneration density on the forest floor shows a relation with the degree of height decrease due to dieback damage, as evaluated using the ratio of actual height to the maximum height estimated from the DH relation. Therefore, after the mature stage, individual trees continue to grow while controlling their canopy size to adjust to changing environmental conditions in the overmatured stage. Our results suggest that P. euphratica growing under large fluctuations in groundwater levels exhibit a sophisticated regeneration system with canopy degradation.  相似文献   

16.
Zhai  Lei  Xie  Jiuyan  Lin  Yafang  Cheng  Kun  Wang  Lijiang  Yue  Feng  Guo  Jingyan  Liu  Jiquan  Yao  Su 《Extremophiles : life under extreme conditions》2018,22(2):221-231

Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.

  相似文献   

17.
The effects of hydrogel on growth and ion relationships of a salt resistant woody species, Populus euphratica , were investigated under saline conditions. The hydrogel used was Stockosorb K410, a highly cross-linked polyacrylamide with about 40% of the amide group hydrolysed to carboxylic groups. Amendment of saline soil (potassium mine refuse) with 0.6% hydrogel improved seedling growth (2.7-fold higher biomass) over a period of 2 years, even though plant growth was reduced by salinity. Hydrogel-treated plants had approximately 3.5-fold higher root length and root surface area than those grown in unamended saline soil. In addition, over 6% of total roots were aggregated in gel fragments. Tissue and cellular ion analysis showed that growth improvement appeared to be the result of increased capacity for salt exclusion and enhancement of Ca2+ uptake. X-ray microanalysis of root compartments indicated that the presence of polymer restricted apoplastic Na+ in both young and old roots, and limited apoplastic and cytoplastic Cl in old roots while increasing Cl compartmentation in cortical vacuoles of both young and old roots. Collectively, radical transport of salt ions (Na+ and Cl) through the cortex into the xylem was lowered and subsequent axial transport was limited. Hydrogel treatment enhanced uptake of Ca2+ and microanalysis showed that enrichment of Ca2+ in root tissue mainly occurred in the apoplast. In conclusion, enhanced Ca2+ uptake and the increased capacity of P. euphratica to exclude salt were the result of improved Ca2+/Na+ concentration of soil solution available to the plant. Hydrogel amendment improves the quality of soil solutions by lowering salt level as a result of its salt-buffering capacity and enriching Ca2+ uptake, because of the polymers cation-exchange character. Accordingly, root aggregation allows good contact of roots with a Ca2+ source and reduces contact with Na+ and Cl, which presumably plays a major role in enhancing salt tolerance of P. euphratica.  相似文献   

18.
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species.  相似文献   

19.
Genomic studies have been used to identify genes underlying many important plant secondary metabolic pathways. However, genes for salicinoid phenolic glycosides (SPGs)—ecologically important compounds with significant commercial, cultural, and medicinal applications—remain largely undescribed. We used a linkage map derived from a full‐sib population of hybrid cottonwoods (Populus spp.) to search for quantitative trait loci (QTL) for the SPGs salicortin and HCH‐salicortin. SSR markers and primer sequences were used to anchor the map to the V3.0 P. trichocarpa genome. We discovered 21 QTL for the two traits, including a major QTL for HCH‐salicortin (R2 = .52) that colocated with a QTL for salicortin on chr12. Using the V3.0 Populus genome sequence, we identified 2,983 annotated genes and 1,480 genes of unknown function within our QTL intervals. We note ten candidate genes of interest, including a BAHD‐type acyltransferase that has been potentially linked to PopulusSPGs. Our results complement other recent studies in Populus with implications for gene discovery and the evolution of defensive chemistry in a model genus. To our knowledge, this is the first study to use a full‐sib mapping population to identify QTL intervals and gene lists associated with SPGs.  相似文献   

20.
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild‐type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild‐type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt‐tolerant trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号