首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

2.
Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.  相似文献   

3.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

4.
Ecosystems around the world are connected by seasonal migration. The migrant animals themselves are influenced by migratory connectivity through effects on the individual and the population level. Measuring migratory connectivity is notoriously difficult due to the simple requirement of data conveying information about the nonbreeding distribution of many individuals from several breeding populations. Explicit integration of data derived from different methods increases the precision and the reliability of parameter estimates. We combine ring‐reencounter, stable isotope, and blood parasite data of Barn Swallows Hirundo rustica in a single integrated model to estimate migratory connectivity for three large scale breeding populations across a latitudinal gradient from Central Europe to Scandinavia. To this end, we integrated a non‐Markovian multistate mark‐recovery model for the ring‐reencounter data with normal and binomial mixture models for the stable isotope and parasite data. The integration of different data sources within a mark‐recapture modeling framework enables the most precise quantification of migratory connectivity on the given broad spatial scale. The results show that northern‐breeding populations and Southern Africa as well as southern‐breeding populations and Western–Central Africa are more strongly connected through Barn Swallow migration than central European breeding populations with any of the African wintering areas. The nonbreeding distribution of Barn Swallows from central European breeding populations seems to be a mixture of those populations breeding further north and south, indicating a migratory divide.  相似文献   

5.
Understanding the biology and conducting effective conservation of migratory species requires an understanding of migratory connectivity – the geographic linkages of populations between stages of the annual cycle. Unfortunately, for most species, we are lacking such information. The North American Bird Banding Laboratory (BBL) houses an extensive database of marking, recaptures and recoveries, and such data could provide migratory connectivity information for many species. To date, however, few species have been analyzed for migratory connectivity largely because heterogeneous re‐encounter probabilities make interpretation problematic. We accounted for regional variation in re‐encounter probabilities by borrowing information across species and by using effort covariates on recapture and recovery probabilities in a multistate capture–recapture and recovery model. The effort covariates were derived from recaptures and recoveries of species within the same regions. We estimated the migratory connectivity for three tern species breeding in North America and over‐wintering in the tropics, common (Sterna hirundo), roseate (Sterna dougallii), and Caspian terns (Hydroprogne caspia). For western breeding terns, model‐derived estimates of migratory connectivity differed considerably from those derived directly from the proportions of re‐encounters. Conversely, for eastern breeding terns, estimates were merely refined by the inclusion of re‐encounter probabilities. In general, eastern breeding terns were strongly connected to eastern South America, and western breeding terns were strongly linked to the more western parts of the nonbreeding range under both models. Through simulation, we found this approach is likely useful for many species in the BBL database, although precision improved with higher re‐encounter probabilities and stronger migratory connectivity. We describe an approach to deal with the inherent biases in BBL banding and re‐encounter data to demonstrate that this large dataset is a valuable source of information about the migratory connectivity of the birds of North America.  相似文献   

6.
Aim Conservation programmes for endangered migratory species or populations require locating and evaluating breeding, stopover and wintering areas. We used multiple stable isotopes in two endangered European populations of wrynecks, Jynx torquilla L., to locate wintering regions and assess the degree of migratory connectivity between breeding and wintering populations. Location Switzerland and Germany. Methods We analysed stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotopes from wing feathers from two populations of wrynecks to infer their wintering origins and to assess the strength of migratory connectivity. We tested whether variation in feather isotopic values within the Swiss population was affected by bird age and collection year and then considered differences in isotopic values between the two breeding populations. We used isotopic values of summer‐ and winter‐grown feathers to estimate seasonal distributions. Finally, we calculated a species‐specific δD discrimination factor between feathers and mean annual δD values to assign winter‐grown feathers to origin. Results Bird age and collection year caused substantial isotopic variation in winter‐grown feathers, which may be because of annually variable weather conditions, movements of birds among wintering sites and/or reflect asynchronous moulting or selection pressure. The large isotopic variance in winter‐grown feathers nevertheless suggested low migratory connectivity for each breeding population, with partially overlapping wintering regions for the two populations. Main conclusions Isotopic variance in winter‐grown feathers of two breeding populations of wrynecks and their geographical assignment point to defined, albeit overlapping, wintering areas, suggesting both leapfrog migration and low migratory connectivity. On this basis, integrative demographic models can be built looking at seasonal survival patterns with links to local environmental conditions on both breeding and wintering grounds, which may elucidate causes of declines in migratory bird species.  相似文献   

7.
Despite recent advances in technology, it remains difficult to connect breeding and non‐breeding areas of populations of migratory organisms due to the challenges of year‐round tracking. Here, we used the Eurasian reed warbler Acrocephalus scirpaceus, a passerine with a pronounced migratory divide to demonstrate the promise of integrating several sources of information within the Bayesian modelling framework for the study of migratory connectivity. To this end, we combined data from stable hydrogen isotope ratios (δ2H) of feathers, ring recoveries, and the geographic delineation of sub‐populations on either side of the migratory divide. Feather δ2H measurements from local juvenile birds sampled across the breeding range tightly correlated with amount‐weighted mean annual precipitation δ2H values predicted for the natal sites. Predicted natal origins of birds intercepted en route in the Mediterranean region largely differed among the five stopover sites. Thanks to the different migratory pathways used by different breeding populations and the existence of a migratory divide, we were able to effectively narrow the assigned regions of origin. Our results show that spatial resolution of likelihood‐based assignments of geographic origins based on δ2H measurements may improve significantly when prior probabilities derived from population‐specific migratory directions are included. Integrating information from stable isotopes, ring recoveries, geolocators and other sources within the Bayesian modelling framework will provide an extremely useful toolbox for the study of animal movements in the future.  相似文献   

8.
ABSTRACT Understanding turnover rates of stable isotopes in metabolically active tissues is critical for making spatial connections for migratory birds because samples provide information about pre‐migratory location only until the tissue turns over to reflect local values. We calculated stable‐hydrogen isotope (δ2H) turnover rate in the red blood cells of two long‐distance migratory songbirds, Bicknell's Thrushes (Catharus bicknelli) and Swainson's Thrushes (Catharus ustulatus), using samples collected at a breeding site in New Brunswick, Canada. Blood from both species captured early in the breeding site was more positive in δ2H than blood sampled later in the summer, but did not match blood values for wintering Bicknell's Thrushes. An asymptotic exponential model was used to estimate turnover of red blood cell δ2H and yielded a half‐life estimate of 21 days and 14 days for Bicknell's and Swainson's thrushes, respectively. Red blood cells of both species approached the local breeding site value one month after the first individuals were detected at the site. For Bicknell's Thrushes, estimated δ2H in blood at arrival (?72‰) was closer to blood collected at wintering sites (mean ?61‰) than to expected breeding site δ2H (?120‰). Discrimination values calculated for red blood cells collected at the breeding site for both species were greater than expected based on studies using keratin. Turnover during migration currently limits the use of blood sampled early in the breeding season for connectivity/carry‐over effect studies. However, direct tracking technology such as geolocators can provide information about migration duration, timing, and stopovers that can be used to improve isotopic turnover equations for metabolically active tissues.  相似文献   

9.
Thor Veen 《Molecular ecology》2013,22(16):4144-4146
Migration is widespread among birds, and the strength of the link between the breeding and wintering grounds, migratory connectivity, influences many ecological and evolutionary processes. Despite its importance, migratory connectivity is poorly estimated for most species. Traditionally, visual observations and bird ringing have been used to monitor migration, but these methods require more effort for relatively little return. Genetic markers and stable isotope signatures have increasingly been used to study connectivity. Each approach has its distinct strengths and weaknesses, and as is often the case, a combination may yield the most insight. In this issue of Molecular Ecology, Rundel and colleagues (2013) present a novel Bayesian statistical framework in which genetics and stable isotope data can be combined to improve the assignment of individuals to different winter or breeding regions. The development of such new statistical methods combined with the increasing number and ease of access of isotopic and genetic data sets will greatly enhance our understanding of migratory connectivity. Add to this the developments of miniature devices to track movements of individuals, and the field is destined to make major progression in the decades to come.  相似文献   

10.
Understanding migratory connectivity is essential for determining the drivers behind population dynamics and for implementing effective conservation strategies for migratory species. Genetic markers provide a means to describe migratory connectivity; however, they can be uninformative for species with weak population genetic structure, which has limited their application. Here, we demonstrated a genomic approach to describing migratory connectivity in the prothonotary warbler, Protonotaria citrea, a Neotropical songbird of conservation concern. Using 26,189 single nucleotide polymorphisms (SNPs), we revealed regional genetic structure between the Mississippi River Valley and the Atlantic Seaboard with overall weak genetic differentiation among populations (FST = 0.0055; 95% CI: 0.0051–0.0059). Genetic variation had a stronger association with geographic rather than environmental factors, with each explaining 14.5% and 8.2% of genetic variation, respectively. By varying the numbers of genomic markers used in population assignment models with individuals of known provenance, we identified a maximum assignment accuracy (89.7% to site, 94.3% to region) using a subset of 600 highly differentiated SNPs. We then assigned samples from nonbreeding sites to breeding region and found low migratory connectivity. Our results highlight the importance of filtering markers for informative loci in models of population assignment. Quantifying migratory connectivity for weakly structured species will be useful for expanding studies to a wider range of migratory species across taxonomic groups and may contribute to a deeper understanding of the evolution of migratory strategies.  相似文献   

11.
The study of migratory connectivity is rapidly growing in ornithology, as is the technology used to measure it. While use of extrinsic markers, such as archival tags, is becoming more prevalent, for many small species the best tool available for tracking birds remains intrinsic markers, such as stable‐hydrogen isotope ratios (δ2H). Many researchers have raised concerns that spatial and temporal environmental variation introduces a large amount of error into isotope‐based assignments, limiting their utility. Here, using feathers, we sought to address these issues in developing δ2H base maps for assigning pied flycatchers Ficedula hypoleuca of known origin to 15 sites across the breeding range (approx. 4 020 800 km2). We evaluated the effects of including random site variation and year‐specific precipitation δ2H (δ2HP) maps on assignments, compared to using mean annual growing season δ2Hp and no site effects. We found a positive correlation between feather δ2H (δ2HF) and mean annual δ2HP, resulting from large scale geographic variation. Repeatability of feather δ2H for individuals sampled in multiple years was strong overall, but variable among populations. Annual variation in δ2HP explained 21% of within individual variation in δ2HF. Neither year‐ nor site‐specific methods improved assignment precision or accuracy. All three methods assigned flycatchers of unknown origin captured at an African overwintering site to similar breeding areas. However, methods using long‐term means of δ2Hp assigned birds more precisely than year‐specific methods. Our results suggest that annual variation in this system is primarily a result of food web or individual level processes and that random site effects are not strong enough to drastically impact accuracy. We conclude that improvements in isotope based geographic assignments will rely on the addition of prior information, such as relative abundance in a Bayesian framework, or additional intrinsic markers.  相似文献   

12.
Precipitation stable isotope patterns over continental scales provide a fundamental tool for tracking origins of migratory species. Hydrogen isotopes from rain and environmental waters are assimilated into animal tissues and may thereby reveal the location where tissues were synthesized. Predictive isotopic maps (or isoscapes) of stable hydrogen isotope values in precipitation (δ2Hp) are typically generated by time‐averaging observations from a global network of stations that have been sampled irregularly in space and time. We previously demonstrated that restricting the temporal range in δ2Hp isoscapes to biologically relevant time frames did not improve predictions of geographic origin for two migratory species in North America and Europe; rather, it decreased the accuracy of assignment. Here, we examined whether the reduction in assignment accuracy stemmed from a decrease in the number of sampling stations available to support isoscape development for shorter time periods. Multiple regression models were used to predict the hydrogen isotope composition in precipitation using isotopic measurements from each station along with a suite of independent variables. The reduction in the number of stations with δ2Hp measurements used to estimate isoscape model parameters did not alter the accuracy and precision of assignments consistently. We also examined accuracy across a range of reduced station numbers and found that mean accuracy was affected only at very low numbers of stations, indicating that the spatial isotopic patterns in precipitation that are useful for assignment applications can be characterized with data from relatively limited data stations. The number and spatial distribution of stations may have more influence when geostatistical models are used to generate isoscapes, as they incorporate spatial correlation in the dataset. The results can be used to guide future research in understanding how data availability and constraints in creating δ2Hp isoscapes may affect predictions of geographic origins.  相似文献   

13.
The conservation of migratory songbirds is often impeded by a lack of understanding of how populations in breeding and wintering areas are geographically linked (migratory connectivity). In recent years, light‐level geolocators have improved our understanding of migratory connectivity. Such information is valuable for evaluating how conservation efforts align between the breeding and non‐breeding areas of at‐risk species, and help to more effectively prioritize the allocation of conservation funding. Golden‐winged Warblers (Vermivora chrysoptera) are imperiled migratory songbirds, but the extent to which conservation efforts in their breeding and non‐breeding areas coincide with patterns of migratory connectivity are not well known. We used light‐level geolocators to evaluate the extent to which conservation actions targeting Golden‐winged Warblers in Nicaragua and in their breeding range in North America align with patterns of migratory connectivity. We recovered six of 22 geolocators that had been deployed on male Golden‐winged Warblers at the El Jaguar Reserve during the winter of 2015–2016. All six males migrated to breeding areas in the western Great Lakes region that includes eastern Minnesota, northern Wisconsin, southwestern Ontario, and Michigan's Upper Peninsula. All six males also had similar migration routes, with spring stopovers in southern Mexico, Guatemala, and Belize, a trans‐Gulf flight, and a stopover in the region of Louisiana, Arkansas, eastern Oklahoma, and Texas. Our results, in combination with those of previous studies, demonstrate strong migratory connectivity between portions of the breeding and winter distributions of Golden‐winged Warblers currently targeted for conservation. However, additional studies are needed to improve our understanding of the stopover ecology of Golden‐winged Warblers, especially in areas where they remain for extended periods of time. Finally, patterns of migratory connectivity revealed in our study should be used in combination with existing demographic parameters for Golden‐winged Warblers in the western Great Lakes and Nicaragua to help inform full life cycle population models for this imperiled songbird.  相似文献   

14.
Irwin DE  Irwin JH  Smith TB 《Molecular ecology》2011,20(15):3102-3115
There is growing interest in understanding patterns of seasonal migratory connectivity between breeding and wintering sites, both because differences in migratory behaviour can be associated with population differentiation and because knowledge of migratory connectivity is essential for understanding the ecology, evolution and conservation of migratory species. We present the first broad survey of geographic variation in the nuclear genome of breeding and wintering Wilson's warblers (Wilsonia pusilla), which have previously served as a research system for the study of whether genetic markers and isotopes can reveal patterns of migratory connectivity. Using 153 samples surveyed at up to 257 variable amplified fragment length polymorphism markers, we show that Wilson's warblers consist of highly distinct western and eastern breeding groups, with all winter samples grouping with the western breeding group. Within the west, there is weak geographic differentiation, at a level insufficient for use in the assignment of wintering samples to specific areas. The distinctiveness of western and eastern genetic groups, with no known intermediates, strongly suggests that these two groups are cryptic species. Analysis of mitochondrial cytochrome b sequence variation shows that the estimated coalescence time between western and eastern clades is approximately 2.3 Ma, a surprisingly old time of divergence that is more typical of distinct species than of subspecies. Given their morphological similarity but strong genetic differences, western and eastern Wilson's warblers present a likely case of association between divergence in migratory behaviour and the process of speciation.  相似文献   

15.
Analyses of stable isotopes and trace elements in feathers may provide important information about location and habitat use during molt, thereby enabling the investigation of migratory connectivity and its ecological consequences in bird species that breed and winter in different areas. We have compared the conclusions arrived at based on the use of these two methods on the same samples of feathers from two migratory birds, the Sand Martin Riparia riparia and the Barn Swallow Hirundo rustica. We investigated the effects of location, age and sex on stable isotope (δ13C, δ15N, δD) and trace element profiles (As, Cd, Mg, Mn, Mo, Se, Sr, Co, Fe, Zn, Li, P, Ti, V, Ag, Cr, Ba, Hg, Pb, S, Ni and Cu). The feathers of adults at the breeding grounds were removed, forcing in birds to grow new feathers at the breeding grounds; this enabled a comparison of composition of feathers grown in Europe and Africa by the same individual. Stable isotope and trace element profiles varied geographically, even at micro-geographic scales, and also among age classes. The results of both methods suggest that food composition and/or source differs between adults and nestlings in the breeding area and that food and/or molting location changes with the age of individuals in Africa. In an attempt to determine the usefulness of data obtained from composition of feathers, we performed discriminant function analyses on information obtained on stable isotopes and trace elements in order to assess the correctness of the classification of group membership. When feathers molted in Africa were compared to those molted in Europe, trace element profiles of the 22 elements generally had a much greater resolution than the stable isotope profiles based on three stable isotopes. The proportion of correctly classified samples was also greater for analyses based on trace elements than for those based on stable isotopes.  相似文献   

16.
Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non‐breeding sites (termed migratory network). Using replicated breeding and non‐breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non‐breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature.  相似文献   

17.
Stable isotopes have been used to estimate migratory connectivity in many species. Estimates are often greatly improved when coupled with species distribution models (SDMs), which temper estimates in relation to occurrence. SDMs can be constructed using point locality data from a variety of sources including extensive monitoring data typically collected by citizen scientists. However, one potential issue with SDM is that these data often have sampling bias. To avoid this potential bias, we created SDMs based on marsh bird monitoring program data collected by citizen scientists and other participants following protocols specifically designed to maximize detections of species of interest at locations representative of larger areas of inference. We then used the SDMs to refine isotopic assignments of breeding areas of autumn‐migrating and wintering sora Porzana carolina, Virginia rail Rallus limicola, and yellow rail Coturnicops noveboracensis based on feathers collected from individuals caught at various locations in the United States from Minnesota south to Louisiana and South Carolina. Sora were assigned to an area that included much of the western U.S. and prairie Canada, covering parts of the Pacific, Central, and Mississippi waterfowl Flyways. Yellow rails were assigned to a broad area along Hudson and James Bay in northern Manitoba and Ontario, as well as smaller parts of Québec, Minnesota, Wisconsin, and Michigan, including parts of the Mississippi and Atlantic Flyways. Virginia rails were from several discrete areas, including parts of Colorado, New Mexico, the central valley of California, and southern Saskatchewan and Manitoba in the Pacific and Central Flyways. Our study demonstrates extensive data from organized citizen science monitoring programs are especially useful for improving isotopic assignments of migratory connectivity in birds, which can ultimately lead to better informed management decisions and conservation actions.  相似文献   

18.
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ(13)C and δ(15)N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.  相似文献   

19.
Differences in seasonal migratory behaviours are thought to be an important component of reproductive isolation in many organisms. Stable isotopes have been used with success in estimating the location and qualities of disjunct breeding and wintering areas. However, few studies have used isotopic data to estimate the movements of hybrid offspring in species that form hybrid zones. Here, we use stable hydrogen to estimate the wintering locations and migratory patterns of two common and widespread migratory birds, Audubon's (Setophaga auduboni) and myrtle (S. coronata) warblers, as well as their hybrids. These two species form a narrow hybrid zone with extensive interbreeding in the Rocky Mountains of British Columbia and Alberta, Canada, which has been studied for over four decades. Isotopes in feathers grown on the wintering grounds or early on migration reveal three important patterns: (1) Audubon's and myrtle warblers from allopatric breeding populations winter in isotopically different environments, consistent with band recovery data and suggesting that there is a narrow migratory transition between the two species, (2) most hybrids appear to overwinter in the south‐eastern USA, similar to where myrtle warblers are known to winter, and (3) some hybrid individuals, particularly those along the western edge of the hybrid zone, show Audubon's‐like isotopic patterns. These data suggest there is a migratory divide between these two species, but that it is not directly coincident with the centre of the hybrid zone in the breeding range. We interpret these findings and discuss them within the context of previous research on hybrid zones, speciation and migratory divides.  相似文献   

20.
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable‐hydrogen (δD), ‐carbon (δ13C), and ‐nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known‐origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon‐Kuskokwim (Y‐K) Delta and Nome, Alaska. Males in the Y‐K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号