首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Individuals in free‐living animal populations generally differ substantially in reproductive success, lifespan and other fitness‐related traits, but the molecular mechanisms underlying this variation are poorly understood. Telomere length and dynamics are candidate traits explaining this variation, as long telomeres predict a higher survival probability and telomere loss has been shown to reflect experienced “life stress.” However, telomere dynamics among very long‐lived species are unresolved. Additionally, it is generally not well understood how telomeres relate to reproductive success or sex. We measured telomere length and dynamics in erythrocytes to assess their relationship to age, sex and reproduction in Cory's shearwaters (Calonectris borealis), a long‐lived seabird, in the context of a long‐term study. Adult males had on average 231 bp longer telomeres than females, independent of age. In females, telomere length changed relatively little with age, whereas male telomere length declined significantly. Telomere shortening within males from one year to the next was three times higher than the interannual shortening rate based on cross‐sectional data of males. Past long‐term reproductive success was sex‐specifically reflected in age‐corrected telomere length: males with on average high fledgling production were characterized by shorter telomeres, whereas successful females had longer telomeres, and we discuss hypotheses that may explain this contrast. In conclusion, telomere length and dynamics in relation to age and reproduction are sex‐dependent in Cory's shearwaters and these findings contribute to our understanding of what characterises individual variation in fitness.  相似文献   

2.
Poor conditions during early development can initiate trade‐offs that favour current survival at the expense of somatic maintenance and subsequently, future reproduction. However, the mechanisms that link early and late life‐history are largely unknown. Recently it has been suggested that telomeres, the nucleoprotein structures at the terminal end of chromosomes, could link early‐life conditions to lifespan and fitness. In wild purple‐crowned fairy‐wrens, we combined measurements of nestling telomere length (TL) with detailed life‐history data to investigate whether early‐life TL predicts fitness prospects. Our study differs from previous studies in the completeness of our fitness estimates in a highly philopatric population. The association between TL and survival was age‐dependent with early‐life TL having a positive effect on lifespan only among individuals that survived their first year. Early‐life TL was not associated with the probability or age of gaining a breeding position. Interestingly, early‐life TL was positively related to breeding duration, contribution to population growth and lifetime reproductive success because of their association with lifespan. Thus, early‐life TL, which reflects growth, accumulated early‐life stress and inherited TL, predicted fitness in birds that reached adulthood but not noticeably among fledglings. These findings suggest that a lack of investment in somatic maintenance during development particularly affects late life performance. This study demonstrates that factors in early‐life are related to fitness prospects through lifespan, and suggests that the study of telomeres may provide insight into the underlying physiological mechanisms linking early‐ and late‐life performance and trade‐offs across a lifetime.  相似文献   

3.
Life‐history and pace‐of‐life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues altering this life‐history optimality; nevertheless, few studies have considered how tactical, sex‐specific plasticity over an individual's lifespan varies in wild populations and influences population resilience. We examined the drivers of individual life‐history schedules using 31 years of trapping data and 28 years of pedigree for the European badger (Meles meles L.), a long‐lived, iteroparous, polygynandrous mammal that exhibits heterochrony in the timing of endocrinological puberty in male cubs. Our top model for the effects of environmental (social and weather) conditions during a badger's first year on pace‐of‐life explained <10% of variance in the ratio of fertility to age at first reproduction (F/α) and lifetime reproductive success. Conversely, sex ratio (SR) and sex‐specific density explained 52.8% (males) and 91.0% (females) of variance in adult F/α ratios relative to the long‐term population median F/α. Weather primarily affected the sexes at different life‐history stages, with energy constraints limiting the onset of male reproduction but playing a large role in female strategic energy allocation, particularly in relation to ongoing mean temperature increases. Furthermore, the effects of social factors on age of first reproduction and year‐to‐year reproductive success covaried differently with sex, likely due to sex‐specific responses to potential mate availability. For females, low same‐sex densities favoured early primiparity; for males, instead, up to 10% of yearlings successfully mated at high same‐sex densities. We observed substantial SR dynamism relating to differential mortality of life‐history strategists within the population, and propose that shifting ratios of ‘fast’ and ‘slow’ life‐history strategists contribute substantially to population dynamics and resilience to changing conditions.  相似文献   

4.
The assumption that reproduction is costly is central to life‐history theory. Good evidence supporting this premise comes from studies, mostly in short‐lived invertebrates, demonstrating a negative relationship between reproduction and longevity. Whether this trade‐off operates broadly, for example in males and females and in short‐ and long‐lived organisms, remains unresolved. We found a negative relationship between reproduction and days survived in captive, wild‐caught, individuals of a long‐lived poison frog with biparental care (Oophaga pumilio). The proportion of time that individuals spent paired and tadpole production rate were negatively associated with days survived in both sexes, and clutch production was negatively associated with days survived in females. These results broaden the taxonomic base upon which this tenet of life‐history theory is built, empirically confirm that females of this species should be choosy when selecting mates and caring for offspring, and suggest that the costs of ‘limited’ male care in this species deserve re‐evaluation. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 211–218.  相似文献   

5.
The evolution of learning can be constrained by trade‐offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex‐specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex‐specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward‐selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward‐selected female lines. In contrast, we found no effect of selection on female reproduction and downward‐selected females showed higher locomotory activity but lived shorter as virgins than upward‐selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex‐specific trade‐offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex‐specific genetic correlations.  相似文献   

6.
The way an organism spreads its reproduction over time is defined as a life‐history trait, and selection is expected to favour life‐history traits associated with the highest fitness return. We use a long‐term dataset of 277 life histories to investigate the shape and strength of selection acting on the age at first reproduction and at last reproduction in the long‐lived Alpine Swift. Both traits were under strong directional selection, but in opposite directions, with selection favouring birds starting their reproductive career early and being able to reproduce for longer. There was also evidence for stabilising selection acting on both traits, suggesting that individuals should nonetheless refrain from reproducing in their first 2 years of life (i.e. when inexperienced), and that reproducing after 7 years of age had little effect on lifetime fitness, probably due to senescence.  相似文献   

7.
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post‐reproductive lifespan. Moreover, most studies have examined long‐established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non‐laboratory‐adapted wild populations of D. melanogaster. Populations varied in a number of life‐history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age‐specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post‐ovipository period. Individual females exhibited clear‐cut fecundity peaks, which contrasts with previous analyses, and post‐peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post‐reproductive lifespan, which on average made up 40% of total lifespan. Post‐reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random ‘add‐on’ at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life‐history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.  相似文献   

8.
FEMALES RECEIVE A LIFE-SPAN BENEFIT FROM MALE EJACULATES IN A FIELD CRICKET   总被引:7,自引:0,他引:7  
Abstract.— Mating has been found to be costly for females of some species because of toxic products that males transfer to females in their seminal fluid. Such mating costs seem paradoxical, particularly for species in which females mate more frequently than is necessary to fertilize their eggs. Indeed, some studies suggest that females may benefit from mating more frequently. The effect of male ejaculates on female life span and lifetime fecundity was experimentally tested in the variable field cricket, Gryllus lineaticeps. In field crickets, females will mate repeatedly with a given male and mate with multiple males. Females that were experimentally mated either repeatedly or multiply lived more than 32% longer than singly mated females. In addition, multiply mated females produced 98% more eggs than singly mated females. Because females received only sperm and seminal fluid from males in the experimental matings, these life‐span and fecundity benefits may result from beneficial seminal fluid products that males transfer to females during mating. Mating benefits rather than mating costs may be common in many animals, particularly in species where female mate choice has a larger effect on male reproductive success than does the outcome of sperm competition.  相似文献   

9.
In many species, intense male-male competition for the opportunity to sire offspring has led to the evolution of selfish reproductive traits that are harmful to the females they mate with. In the fruit fly, Drosophila melanogaster, males modulate their reproductive behavior based on the perceived intensity of competition in their premating environment. Specifically, males housed with other males subsequently transfer a larger ejaculate during a longer mating compared to males housed alone. Although the potential fitness benefits to males from such plasticity are clear, its effects on females are mostly unknown. Hence, we tested the long-term consequences to females from mating with males with distinct social experiences. First, we verified that competitive experience influences male mating behavior and found that males housed with rivals subsequently have shorter mating latencies and longer mating durations. Then, we exposed females every other day for 20 days to males that were either housed alone or with rivals, and subsequently measured their fitness. We found that females mated to males housed with rivals produce more offspring early in life but fewer offspring later in life and have shorter lifespans but similar intrinsic population growth rates. These results indicate that plasticity in male mating behavior can influence female life histories by altering females’ relative allocation to early versus late investment in reproduction and survival.  相似文献   

10.
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that ‘silver spoon'' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.  相似文献   

11.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

12.
Extra‐pair paternity (EPP) is often linked to male age in socially monogamous vertebrates; that is, older males are more likely to gain EPP and less likely to be cuckolded. However, whether this occurs because males improve at gaining paternity as they grow older, or because “higher quality” males that live longer are preferred by females, has rarely been tested, despite being central to our understanding of the evolutionary drivers of female infidelity. Moreover, how extra‐pair reproduction changes with age within females has received even less attention. Using 18 years of longitudinal data from an individually marked population of Seychelles warblers (Acrocephalus sechellensis), we found considerable within‐individual changes in extra‐pair reproduction in both sexes: an early‐life increase and a late‐life decline. Furthermore, males were cuckolded less as they aged. Our results indicate that in this species age‐related patterns of extra‐pair reproduction are determined by within‐individual changes with age, rather than differences among individuals in longevity. These results challenge the hypothesis—based on longevity reflecting intrinsic quality—that the association between male age and EPP is due to females seeking high‐quality paternal genes for offspring. Importantly, EPP accounted for up to half of male reproductive success, emphasizing the male fitness benefits of this reproductive strategy. Finally, the occurrence of post‐peak declines in extra‐pair reproduction provides explicit evidence of senescence in infidelity in both males and females.  相似文献   

13.
Bats live substantially longer than any other similar‐sized mammal despite high metabolic rates during flight. The underlying causes for the longevity of bats and the question whether bats exhibit signs of senescence – a progressive deterioration in performance – are still unclear. Here, we describe rates of senescence in individual annual fitness, survival and reproduction using survival and recruitment data collected over an 18‐yr period from 77 males and 81 females in a wild population of Saccopteryx bilineata (greater sac‐winged bat), a polygynous species inhabiting colonies where female groups are defended each by a territorial male. In individuals older than 4 yr of age, individual fitness contribution, survival and recruitment declined with increasing age in males but not in females. Rates of senescence in annual individual fitness and in reproduction of males were at least an order of magnitude higher than those of females. This finding might be explained by the ‘disposable soma theory’ that attributes senescence to an optimal allocation of resources to somatic maintenance and competing traits such as reproduction. The rate of senescence in the survival of males was also significant but of the same order of magnitude as the (non‐significant) rate of females. Unlike many other polygynous mammals, greater sac‐winged bats show little overt male–male competition. As senescence in survival was only weak in males, our results are consistent with the theories for polygynous mammals, which view the trade‐off between male investment in physical traits for intense male–male competition against survival as a major source of the decline of male survival with age. This is the first study to demonstrate sex‐specific senescence rates in a wild population of a small, long‐lived mammalian species.  相似文献   

14.
In long‐lived polygynous species, male reproductive success is often monopolized by a few mature dominant individuals. Young males are generally too small to be dominant and may employ alternative tactics; however, little is known about the determinants of reproductive success for young males. Understanding the causes and consequences of variability in early reproductive success may be crucial to assess the strength of sexual selection and possible long‐term trade‐offs among life‐history traits. Selective pressures driven by fluctuating environmental conditions may depend on age class. We evaluated the determinants of reproduction in male bighorn sheep (Ovis canadensis) aged 2–4 years using 30 years of individual‐level data. These young males cannot defend estrous ewes and use alternative mating tactics. We also investigated how the age of first detected reproduction was correlated to lifetime reproductive success and longevity. We found that reproductive success of males aged 3 years was positively correlated to body mass, to the proportion of males aged 2–4 years in the competitor pool, and to the number of females available per adult male. These results suggest that reproductive success depends on both competitive ability and population age–sex structure. None of these variables, however, had significant effects on the reproductive success of males aged 2 or 4 years. Known reproduction before the age of five increased lifetime reproductive success but decreased longevity, suggesting a long‐term survival cost of early reproduction. Our analyses reveal that both individual‐level phenotypic and population‐level demographic variables influence reproductive success by young males and provide a rare assessment of fitness trade‐offs in wild polygynous males.  相似文献   

15.
Most hypotheses related to the evolution of female‐biased extreme sexual size dimorphism (SSD) attribute the differences in the size of each sex to selection for reproduction, either through selection for increased female fecundity or selection for male increased mobility and faster development. Very few studies, however, have tested for direct fitness benefits associated with the latter – small male size. Mecaphesa celer is a crab spider with extreme SSD, whose males are less than half the size of females and often weigh 10 times less. Here, we test the hypotheses that larger size in females and smaller size in males are sexually selected through differential pre‐ and postcopulatory reproductive benefits. To do so, we tested the following predictions: matings between small males and large females are more likely to occur due to mate choice; females mated to small males are less likely to accept second copulation attempts; and matings between small males and large females will result in larger clutches of longer‐lived offspring. Following staged mating trials in the laboratory, we found no support for any of our predictions, suggesting that SSD in M. celer may not be driven by pre‐ or post‐reproductive fitness benefits to small males.  相似文献   

16.
Kim SY  Velando A  Torres R  Drummond H 《Oecologia》2011,166(3):615-626
Theories of ageing predict that early reproduction should be associated with accelerated reproductive senescence and reduced longevity. Here, the influence of age of first reproduction on reproductive senescence and lifespan, and consequences for lifetime reproductive success (LRS), were examined using longitudinal reproductive records of male and female blue-footed boobies (Sula nebouxii) from two cohorts (1989 and 1991). The two sexes showed different relationships between age of first reproduction and rate of senescent decline: the earlier males recruited, the faster they experienced senescence in brood size and breeding success, whereas in females, recruiting age was unrelated to age-specific patterns of reproductive performance. Effects of recruiting age on lifespan, number of reproductive events and LRS were cohort- and/or sex-specific. Late-recruiting males of the 1989 cohort lived longer but performed as well over the lifetime as early recruits, suggesting the existence of a trade-off between early recruitment and long lifespan. In males of the 1991 cohort and females of both cohorts, recruiting age was apparently unrelated to lifespan, but early recruits reproduced more frequently and fledged more chicks over their lifetime than late recruits. Male boobies may be more likely than females to incur long-term costs of early reproduction, such as early reproductive senescence and diminished lifespan, because they probably invest more heavily than females. In the 1991 cohort, which faced the severe environmental challenge of an El Ni?o event in the first year of life, life-history trade-offs of males may have been masked by effects of individual quality.  相似文献   

17.
Josh R. Auld  Anne Charmantier 《Oikos》2011,120(8):1129-1138
Reproductive senescence, an intra‐individual decline in reproductive function with age, is widespread, but proximate factors determining its rate remain largely unknown. Most studies of reproductive senescence focus on females, leaving senescence in male function and its implications for female function largely understudied. We constructed linear mixed models to explore the interactive effects of paternal and maternal age and a life‐history trait (i.e. age at first reproduction) on four fitness components (i.e. laying date, clutch size, number of fledglings and number of recruits) measured in a wild, breeding population of blue tits Cyanistes caeruleus ogliastrae where individual breeding success has been followed for over 30 years (our dataset spanned 29 years). Previous studies have shown that, across female lifespan, laying date decreases and subsequently increases; earlier laying dates result in higher fitness because hatchlings have greater access to a seasonal food source. Our analyses reveal that females that initiate reproduction early in life show a greater delay in laying date with old age. In addition to delayed laying dates, older females lay smaller clutches. However, the magnitude of female age effects was influenced by the age at first reproduction of their breeding partners. Senescence of laying date and clutch size was reduced when females mated with males that reproduced early in life compared to males that delayed reproduction. We confirmed that both laying date and clutch size were significantly correlated with reproductive fitness suggesting that these dynamics early in the breeding cycle can have long‐term consequences. These complex phenotypic interactions shed light on the proximate mechanisms underlying reproductive senescence in nature and highlight the potential importance of cross‐sex age by life‐history interactions.  相似文献   

18.
Because variation in age of first reproduction can have major effects on individual fitness and population dynamics, it is important to understand what maintains that variability. Although early primiparity is assumed to be costly, it is sometimes associated with high lifetime reproductive success. We used a long‐term study on bighorn sheep Ovis canadensis to determine what variables affect age at first reproduction, investigate the impact of primiparity on body resources and quantify the reproductive performance of primiparous ewes. We then examined the consequences of delayed primiparity on adult body mass, longevity and lifetime reproductive success. Environmental conditions during early development, body mass as a yearling, genotype and maternal effects affected age of primiparity. Primiparous ewes lost more mass in winter and gained less mass in summer than multiparous ewes. Small yearling ewes that postponed reproduction attained similar adult mass than heavy yearling ewes who reproduced at a younger age. Early primiparity did not reduce longevity and was positively associated with lifetime reproductive success. Starting to reproduce as soon as possible appears to maximize fitness of females. When early life conditions are unfavorable, however, delayed primiparity allows greater body growth and likely maximizes survival. The combination of a conservative reproductive strategy and maternal effects on age of primiparity may partly delay population recovery following density‐dependent declines.  相似文献   

19.
Environmental conditions experienced during early life may have long‐lasting effects on later‐life phenotypes and fitness. Individuals experiencing poor early‐life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic “Predictive Adaptive Response” (PAR), whereby they respond—in terms of physiology or life‐history strategy—to the conditions experienced in early life to maximize later‐life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early‐life conditions negatively impact an individual''s physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early‐life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long‐lived model species. Using a long‐term individual‐based dataset, we investigated how early‐life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early‐life environmental conditions may vary greatly, so we also tested whether telomere length—shorter telomers are a biomarker of an individual''s exposure to stress—can provide an effective measure of the individual‐specific impact of early‐life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early‐life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early‐life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early‐life body condition was associated with lower first‐year survival and reduced longevity, indicating that poor early‐life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early‐life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.  相似文献   

20.
Classic theories of ageing evolution predict that increased extrinsic mortality due to an environmental hazard selects for increased early reproduction, rapid ageing and short intrinsic lifespan. Conversely, emerging theory maintains that when ageing increases susceptibility to an environmental hazard, increased mortality due to this hazard can select against ageing in physiological condition and prolong intrinsic lifespan. However, evolution of slow ageing under high‐condition‐dependent mortality is expected to result from reallocation of resources to different traits and such reallocation may be hampered by sex‐specific trade‐offs. Because same life‐history trait values often have different fitness consequences in males and females, sexually antagonistic selection can preserve genetic variance for lifespan and ageing. We previously showed that increased condition‐dependent mortality caused by heat shock leads to evolution of long‐life, decelerated late‐life mortality in both sexes and increased female fecundity in the nematode, Caenorhabditis remanei. Here, we used these cryopreserved lines to show that males evolving under heat shock suffered from reduced early‐life and net reproduction, while mortality rate had no effect. Our results suggest that heat‐shock resistance and associated long‐life trade‐off with male, but not female, reproduction and therefore sexually antagonistic selection contributes to maintenance of genetic variation for lifespan and fitness in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号