首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The values of many important traits of plants in a community change along environmental gradients. Such changes may involve intraspecific variation and replacement by species that have different trait values. We hypothesized that they also involve the variation within and among functional groups (FGs) to the environmental dependence of trait values at the community level. We studied environmental dependence of trait values in 27 moorlands at various scales and analyzed to what extent intraspecific variation, species replacement within FGs and FG replacement contribute to the gradient of community trait values. The community structure in moorlands was influenced mainly by two environmental factors: temperature and water condition. Plants inhabiting sites with low temperature and low-pH generally tended to have lower maximum leaf height, greater leaf mass per area, and smaller leaf size. At the community level, site-mean of maximum leaf height and leaf size generally increased with increasing temperature and water pH. Our analysis demonstrated that the relative contributions of intraspecific variation, species replacement within FGs and FG replacement differed depending on combinations of the traits and environments. The contribution of FG replacement varied considerably among cases (0.6–34.5 %). Species replacement within FGs, which has received little attention in previous studies, was most responsible for the community-level changes (31.6–65.3 %) and intraspecific variation also made a large contribution (22.9–57.9 %). Understanding such various mechanisms involving intraspecific variation and species replacement should help us better predict how the structure and functioning of moorland plant communities will respond to climate change.  相似文献   

2.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

3.
Body size of organisms as a fitness-related phenotype has evolved in response to local conditions, often through the size-dependent thermoregulatory mechanisms. The direction and degree of this response should depend on animals’ lifestyle in terms of the preference for terrestrial or aquatic conditions, especially so for adult anurans that differ in lifestyle among species but all must maintain certain body temperatures for metabolism. It may be expected that anuran species frequently exposed to terrestrial environments characterized by fluctuant thermal conditions are more plastic in body size along thermal gradients than those highly relaying on aquatic environments where thermal conditions are relatively stable. We test this prediction using both interspecific and intraspecific data. With anurans in China as the model organisms, we show that across terrestrial species but not aquatic species, body size decreases with increasing ambient temperature. From the published literature worldwide, we summarized that more terrestrial versus fewer aquatic species follow the predicted ecogeographical size patterns. In addition, both interspecific and intraspecific data reveal that arboreal anurans do not exhibit the size cline, probably because relatively warm climates experienced by these species impose weak selective pressures on heat conservation or adaptation to tree-climbing constrains the variation in body size. Our finding highlights the importance of taking lifestyle into account when assessing macroevolutionary trends in body size for anurans in particular and ectothermic taxa in general.  相似文献   

4.
The worldwide distribution of toxicants is an important yet understudied driver of biodiversity, and the mechanisms relating toxicity to diversity have not been adequately explored. Here, we present a community model integrating demography, dispersal and toxicant‐induced effects on reproduction driven by intraspecific and interspecific variability in toxicity tolerance. We compare model predictions to 458 species abundance distributions (SADs) observed along concentration gradients of toxicants to show that the best predictions occur when intraspecific variability is five and ten times higher than interspecific variability. At high concentrations, lower settings of intraspecific variability resulted in predictions of community extinction that were not supported by the observed SADs. Subtle but significant species losses at low concentrations were predicted only when intraspecific variability dominated over interspecific variability. Our results propose intraspecific variability as a key driver for biodiversity sustenance in ecosystems challenged by environmental change.  相似文献   

5.
林窗是森林更新演替的重要环节, 揭示林窗环境下功能性状变异来源及其相对贡献, 有助于阐明植物对林窗环境的响应。该研究以中亚热带格氏栲(Castanopsis kawakamii)天然林为对象, 设置9个不同大小的林窗样地, 运用方差分解探讨林窗、物种和个体对叶性状变异的相对贡献, 采用线性回归分析不同大小林窗下群落性状变化及种间和种内性状变异的重要性。研究发现: (1)格氏栲天然林林窗植物比叶面积、叶干物质含量、叶厚和叶绿素含量由种间性状变异主导, 叶氮含量由种内性状变异主导, 叶磷含量受林窗大小影响最大。(2)群落叶磷含量与林窗大小具有显著正相关关系, 土壤温度和水解氮含量对群落叶磷含量具有显著正效应, 土壤有效磷含量具有显著负效应。(3)沿林冠开放度的群落叶磷含量变化主要由种内性状变异引起, 优势种扮演着重要角色。结果表明, 格氏栲天然林林窗环境下植物功能性状仍以种间性状变异为主(平均41%), 但沿林窗环境梯度的群落性状变化主要源自种内性状变异, 通过植物表型可塑性响应环境改变, 优势种作用明显。  相似文献   

6.
Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate‐warming‐related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature–size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James’ and Bergmann's temperature–size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature–size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole‐community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size.  相似文献   

7.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

8.
In a companion paper, we started an examination of the anatomy of the interspecific relationship between local abundance and geographical range size in the British avifauna by analysing its spatial dynamics. Here, we use the same data to extend this study to a consideration of the temporal dynamics of the relationship. Most species of British breeding bird show a positive intraspecific abundance–range size relationship through time: i.e. in years when a species is locally more abundant it also occupies a higher proportion of census sites. However, the majority of such relationships are not statistically significant, and other relationships that are statistically significant are negative. Therefore, intraspecific abundance–range size relationships do not simply mirror the relationship across species. Where they do arise, positive relationships are more likely to be associated with positive intraspecific relationships between range size and maximum rather than minimum abundance. The interspecific abundance–range size relationship is remarkably consistent across years, and is always significantly positive. The relationships for woodland and farmland census sites show correlated variation, so that in years when the linear regression slope and coefficient of determination are high across species on farmland plots, they also tend to be high across species on woodland plots. Common species tend to be common on both farmland and woodland plots, and tend to be common in all years. Likewise, rare species tend to be rare in all habitats and years. This concordance means that the positive interspecific abundance–range size relationship can be viewed as occurring largely independently of intraspecific relationships. It follows from the above that developing an understanding of intraspecific abundance–range size relationships may be of only limited value in ascertaining the determinants of positive interspecific abundance–range size relationships. We conclude that for interspecific relationships, it will be important to know why some species are consistently common and others rare, whereas for intraspecific relationships it will be important to understand the dynamic links between local abundances across sites.  相似文献   

9.
The return of the variance: intraspecific variability in community ecology   总被引:1,自引:0,他引:1  
Despite being recognized as a promoter of diversity and a condition for local coexistence decades ago, the importance of intraspecific variance has been neglected over time in community ecology. Recently, there has been a new emphasis on intraspecific variability. Indeed, recent developments in trait-based community ecology have underlined the need to integrate variation at both the intraspecific as well as interspecific level. We introduce new T-statistics ('T' for trait), based on the comparison of intraspecific and interspecific variances of functional traits across organizational levels, to operationally incorporate intraspecific variability into community ecology theory. We show that a focus on the distribution of traits at local and regional scales combined with original analytical tools can provide unique insights into the primary forces structuring communities.  相似文献   

10.
1. Range size, population size and body size, the key macroecological variables, vary temporally both within and across species in response to anthropogenic and natural environmental change. However, resulting temporal trends in the relationships between these variables (i.e. macroecological patterns) have received little attention. 2. Positive relationships between the local abundance and regional occupancy of species (abundance-occupancy relationships) are among the most pervasive of all macroecological patterns. In the absence of formal predictions of how abundance-occupancy relationships may vary temporally, we outline several scenarios of how changes in abundance within species might affect interspecific patterns. 3. We use data on the distribution and abundance of 73 farmland and 55 woodland bird species in Britain over a 32-year period encompassing substantial habitat modification to assess the likelihood of these scenarios. 4. In both farmland and woodland habitats, the interspecific abundance-occupancy relationship changed markedly over the period 1968-99, with a significant decline in the strength of the relationship. 5. Consideration of intraspecific dynamics shows that this has been due to a decoupling of abundance and occupancy particularly in rare and declining species. Insights into the intraspecific processes responsible for the interspecific trend are obtained by analysis of temporal trends in the distribution of individuals between sites, which show patterns consistent with habitat quality declines. 6. This study shows that a profitable approach to ascertaining the nature of human impacts is to link intra- and interspecific processes. In the case of British farmland and woodland birds, changes to the environment lead to species-specific responses in large-scale distributions. These species-specific changes are the driver of the observed changes in the form and strength of the interspecific relationship.  相似文献   

11.
Understanding how multiple extrinsic (density‐independent) factors and intrinsic (density‐dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density‐dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) vs. density‐dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10‐year capture‐mark‐recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete‐time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type, and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density‐dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate‐driven environmental change.  相似文献   

12.
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature‐ and size scaling of vital rates for the dynamics of populations experiencing warming using a stage‐structured consumer‐resource model. We show that interactive scaling alters population and stage‐specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage‐structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size–temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size–temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size‐specific temperature effects is pivotal for understanding how warming affects animal populations and communities.  相似文献   

13.
探究功能性状沿着环境梯度如何变化一直以来是基于性状的群落生态学的核心问题之一。尽管功能性状存在种内和种间变异, 但种内变异沿环境梯度如何变化仍有待探究。本文以鼎湖山南亚热带常绿阔叶林1.44 ha塔吊样地内16个树种的2,820个个体为研究对象, 探究4种叶功能性状(比叶面积、叶干物质含量、叶厚度和叶面积)沿群落垂直层次的种内变异。首先, 利用随机效应线性模型量化塔吊样地内的种内变异和种间变异; 其次, 利用Kmeans函数将森林的垂直层次划分为灌木层、亚冠层和林冠层, 并通过构建回归模型探究叶功能性状在群落垂直层次中的种内变异格局。最后, 应用混合线性模型和单因素方差分析的方法探究叶功能性状沿垂直层次的种内变异是否具有物种依赖性。结果表明: 在局域群落中, 并非所有叶功能性状的种内变异都低于种间变异; 叶功能性状在不同垂直层次的种内变异格局存在显著差异, 且种内变异与垂直范围呈正相关; 叶功能性状的种内变异具有较强的物种依赖性, 因此树种差异相对于小环境解释了更多的性状变异; 此外, 不同叶功能性状的种内变异沿垂直层次的变化趋势并不一致。本研究发现种内变异对于物种共存具有重要作用。  相似文献   

14.
Intraspecific variation in body size is common in animals and plants. Body size affects trophic interactions like foraging ability and vulnerability to predation, which in turn affect individual fitness as well as population stability and extinction risk. Experimental and theoretical work has shown that the size distribution of individuals within cohorts is strongly influenced by intraspecific competition for resources, often leading to skewed frequency distributions. However, little is known about the effects of environmental factors such as climate and eutrophication on the cohort size‐structure of natural populations. We use a long‐term time series of scientific monitoring of a freshwater fish (European perch Perca fluviatilis) to investigate the effects of density dependence, predation, nutrient availability, climate and the timing of spawning on the cohort size distributions. We find that the mean length of the fish is best predicted by the extrinsic factors phosphorus concentration and summer temperature, and the densities of the different age‐classes, whereas the skewness of the length distribution is best predicted by phosphorus concentration, summer temperature, abundance of small fish, and the timing of spawning. Higher nutrient levels, temperatures and densities of small fish increase food availability and thus reduce competition, which is reflected in increased mean length and decreased skewness. The timing of spawning affects skewness presumably through changes in the initial size variation of the cohort and the length of the first growth season. Our results indicate that higher temperatures increase the mean length and decrease skewness due to the concurrent eutrophication of the lake. The study thereby highlights the potential impact of human‐induced environmental change on the size structure of fish populations. More studies are needed to understand better the complex mechanisms through which these factors alter the intensity of intraspecific competition in fish communities.  相似文献   

15.
The catastrophic loss of large-bodied mammals during the terminal Pleistocene likely led to cascading effects within communities. While the extinction of the top consumers probably expanded the resources available to survivors of all body sizes, little work has focused on the responses of the smallest mammals. Here, we use a detailed fossil record from the southwestern United States to examine the response of the hispid cotton rat Sigmodon hispidus to biodiversity loss and climatic change over the late Quaternary. In particular, we focus on changes in diet and body size. We characterize diet through carbon (δ13C) and nitrogen (δ15N) isotope analysis of bone collagen in fossil jaws and body size through measurement of fossil teeth; the abundance of material allows us to examine population level responses at millennial scale for the past 16 ka. Sigmodon was not present at the cave during the full glacial, first appearing at ~16 ka after ice sheets were in retreat. It remained relatively rare until ~12 ka when warming temperatures allowed it to expand its species range northward. We find variation in both diet and body size of Sigmodon hispidus over time: the average body size of the population varied by ~20% (90–110 g) and mean δ13C and δ15N values ranged between −13.5 to −16.5‰ and 5.5 to 7.4‰ respectively. A state–space model suggested changes in mass were influenced by diet, maximum temperature and community structure, while the modest changes in diet were most influenced by community structure. Sigmodon maintained a fairly similar dietary niche over time despite contemporaneous changes in climate and herbivore community composition that followed the megafauna extinction. Broadly, our results suggest that small mammals may be as sensitive to shifts in local biotic interactions within their ecosystem as they are to changes in climate and large-scale biodiversity loss.  相似文献   

16.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

17.
Functional traits are increasingly recognized as an integrative approach by ecologists to quantify a key facet of biodiversity. And these traits are primarily expressed as species means in previous studies, based on the assumption that the effects of intraspecific variability can be overridden by interspecific variability when studying functional ecology at the community level. However, given that intraspecific variability could also have important effects on community dynamics and ecosystem functioning, empirical studies are needed to investigate the importance of intraspecific variability in functional traits. In this study, 256 Scutiger boulengeri tadpole individuals from four different populations are used to quantify the functional difference between populations within a species, and the relative contribution of inter‐ and intrapopulation variability in functional traits. Our results demonstrate that these four populations differ significantly in functional attributes (i.e., functional position, functional richness, and low functional overlap), indicating that individuals from different populations within a species should be explicitly accounted for in functional studies. We also find similar relative contribution of inter‐ (~56%) and intrapopulation (~44%) variation to the total variability between individuals, providing evidence that individuals within populations should also be incorporated in functional studies. Overall, our results support the recent claims that intraspecific variability cannot be ignored, as well as the general idea of “individual level” research in functional ecology.  相似文献   

18.
Understanding which factors and rules govern the process of assembly in communities constitutes one of the main challenges of plant community ecology. The presence of certain functional strategies along broad environmental gradients can help to understand the patterns observed in community assembly and the filtering mechanisms that take place. We used a trait‐based approach, quantifying variations in aboveground (leaf and stem) and belowground (root) functional traits along environmental gradients in Mediterranean forest communities (south Spain). We proposed a new practical method to quantify the relative importance of species turnover (distinguishing between species occurrence and abundance) versus intraspecific variation, which allowed us to better understand the assemblage rules of these plant communities along environmental gradients. Our results showed that the functional structure of the studied plant communities was highly determined by soil environment. Results from our modelling approach based on maximum likelihood estimators showed a predominant influence of soil water storage on most of the community functional traits. We found that changes in community functional structure along environmental gradients were mainly promoted by species turnover rather than by intraspecific variability. Specifically, our new method of variance decomposition demonstrated that between‐site trait variation was the result of changes in species occurrence rather than in the abundance of certain dominant species. In conclusion, this study showed that water availability promoted the predominance of specific trait values (both in above and belowground fractions) associated to a resource acquisition or conservation strategy. In addition, we provided evidence that changes on community functional structure along the environmental gradient were mainly promoted by a process of species replacement, which represent a crucial step towards a more general understanding of the relative importance of intraspecific versus interspecific trait variation in these woody Mediterranean communities.  相似文献   

19.
The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re‐examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000–2011. This report presents the first basin‐scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006–2007 in the both regions because of the increased dominance of large cold‐water species. Sea surface temperature varied in an east–west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006–2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature–size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold‐water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006–2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate‐induced basin‐scale cool–warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature–size relationship is not invariant and that understanding region‐specific processes linking climate and ecosystem is indispensable.  相似文献   

20.
解释生产力的变异需要考虑群落间植物高度的种内变异 已有研究表明,种内性状变异在群落构建过程中具有重要作用,但是迄今为止关于种内性状变异对生态系统功能的贡献仍然知之甚少。我们在青藏高原的高寒草甸进行了为期4年的功能群去 除实验,以研究植物高度的种间和种内变异对生产力的相对重要性。将75个控制群落内的株高总 变异分为种间变异(TVinter)和种内变异(ITVwithin),将群落间的群落加权平均高度分解为固定群落加权平 均值(CWMfixed)和群落间种内变异(ITVamong)。我们通过广义加性混合模型、模型筛选和结构方程模型评估了性状变异(即TVinter、ITVwithin、CWMfixed和ITVamong)如何间接介导功能群去除后生产力的变化。研究结果表明,功能群去除不仅会直接引起生产力变化,同时还会通过改变种间和种内株高变异间接影响生产力(即CWMfixed和ITVamong)。“选择效应”和“避荫综合征”都可能导致更高的CWMfixed和ITVamong,从而起到调节生产力的作用。该研究结果说明,只考虑种间变异可能会低估植物群落功能结构在驱动生态系统过程中的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号