首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.  相似文献   

2.
1. Impacts of global change on the distribution, abundance, and phenology of species have been widely documented. In particular, recent climate change has led to widespread changes in animal and plant seasonality, leading to debate about its potential to cause phenological mismatches among interacting taxa. 2. In mountainous regions, populations of many species show pronounced phenological gradients over short geographic distances, presenting the opportunity to test for effects of climate on phenology, independent of variation in confounding factors such as photoperiod. 3. Here we show for 32 butterfly species sampled for five years over a 1700 m gradient (560–2260 m) in a Mediterranean mountain range that, on average, annual flight period is delayed with elevation by 15–22 days per kilometre. Species mainly occurring at low elevations in the region, and to some extent those flying earlier in the year, showed phenological delays of 23–36 days per kilometre, whereas the flight periods of species that occupy high elevations, or fly in late summer, were consistently more synchronised over the elevation gradient. 4. Elevational patterns in phenology appear to reflect a narrowing phenological window of opportunity for larval and adult butterfly activity of high elevation and late‐flying species. 5. Here, we speculate as to the causes of these patterns, and the consequences for our ability to predict species responses to climate change. Our results raise questions about the use of space–time substitutions in predicting phenological responses to climate change, since traits relating to flight period and environmental associations may influence the capacity of species to adapt to changing climates.  相似文献   

3.
The goal of the present study is to assess how landscape configuration influenced the distribution of life-history traits across bird, carabid beetle and butterfly communities of mosaic forest landscapes in south-western France. A set of 12 traits was selected for each species, characterizing rarity, biogeographical distribution, body size, trophic guild, dispersal power, reproductive potential and phenology. We used a three-table ordination method, RLQ analysis, to link directly bird, beetle and butterfly traits to the same set of landscape metrics calculated in 400 m-radius buffers around sample points. RLQ analyses showed significant associations between life-history traits and landscape configuration for all three taxonomical groups. Threatened species from all groups were characterized by a combination of life traits that makes them especially sensitive to the fragmentation of herbaceous and shrub-dominated habitats at the landscape scale. These key life traits were low productivity, intermediate body mass, restricted geographic range, late phenology and ground gleaning for threatened birds, intermediate body size, spring adult activity, northern distribution and summer breeding period for threatened carabids, and restricted range, overwintering as eggs or larvae, low mobility, monophagy and short flight periods for threatened butterflies. Focusing on species life traits can provide a functional perspective, which helps to determine adequate measures for the conservation of threatened species and communities of several taxonomical groups in mosaic landscapes.  相似文献   

4.
Summary

Seasonality and community structure of Phanaeini (Coleoptera: Scarabaeidae) in French Guiana : study by mass sampling using large flight interception traps. Phanaeini is a neotropical tribe of scarabs mostly dung or carrion feeders, generally of large size. This paper analyses data collected with large window flight interception traps set on nine forest sites in French Guiana with a primary goal of biotic inventory. The study deals with three main questions: 1) What is the spatial structure of communities and are there some species indicators of secondary forests and others of pristine conditions? 2) What is the temporal structure of the community and is there a stable pattern of seasonality between years and sites? 3) Between close species, is there a temporal asynchrony? Our samples contain more than 9,700 identified specimens, nine complete year series on four sites including a four years continuous survey near Cayenne. We found a significantly lower diversity (Shannon and Simpson index) on the most fragmented and hunted sites. A more equitable repartition of species and a relative abundance of the larger species appear typical of undisturbed sites. Other observations reinforce the hypothesis that there is a fast and huge modification in Phanaeini community structure on the most accessible and disturbed sites. Seasonal pattern shows an abundance peak at the beginning of the rainy season (December or January), a medium abundance during the rainy season with sometimes secondary peaks and a low to very low activity during the dry season. The pattern is rather consistent between years but changes with sampling site. It is however different from the results of other studies using pitfall baited traps in Amazonian and Guyanese forests. These studies show much less clear temporal pattern or no seasonal change. There is no obvious pattern of niche sharing by phenological differences between species. The methodological differences of sampling between baited traps and window flight traps are eventually discussed. Due to its passive way of collecting, interception trap is considered as quite relevant for studying flight activity spatio-temporal patterns of Scarabaeinae. This aspect may explain some differences in seasonality patterns compared to other studies.  相似文献   

5.
Body size has long been recognized to play a key role in shaping species interactions. For example, while small species thrive in a diversity of environments, they typically lose aggressive contests for resources with larger species. However, numerous examples exist of smaller species dominating larger species during aggressive interactions, suggesting that the evolution of traits can allow species to overcome the competitive disadvantage of small size. If these traits accumulate as lineages diverge, then the advantage of large size in interspecific aggressive interactions should decline with increased evolutionary distance. We tested this hypothesis using data on the outcomes of 23,362 aggressive interactions among 246 bird species pairs involving vultures at carcasses, hummingbirds at nectar sources, and antbirds and woodcreepers at army ant swarms. We found the advantage of large size declined as species became more evolutionarily divergent, and smaller species were more likely to dominate aggressive contests when interacting with more distantly-related species. These results appear to be caused by both the evolution of traits in smaller species that enhanced their abilities in aggressive contests, and the evolution of traits in larger species that were adaptive for other functions, but compromised their abilities to compete aggressively. Specific traits that may provide advantages to small species in aggressive interactions included well-developed leg musculature and talons, enhanced flight acceleration and maneuverability, novel fighting behaviors, and traits associated with aggression, such as testosterone and muscle development. Traits that may have hindered larger species in aggressive interactions included the evolution of morphologies for tree trunk foraging that compromised performance in aggressive contests away from trunks, and the evolution of migration. Overall, our results suggest that fundamental trade-offs, such as those associated with body size, are more likely to break down over evolutionary time, changing the rules that govern species interactions and structure ecological communities.  相似文献   

6.
Interpretation of light trap catches of moths is complicated by daily variation in weather that alters flight activity and numbers caught. Light trap efficiency is also modified by wind and fog, and daily weather may effect absolute abundance (numbers actually present). However, actograph experiments and other sampling methods suggest that changes in daily activity are large by comparison to changes in absolute abundance. Daily variation in weather (other than wind and fog) is therefore a form of sampling error in absolute abundance estimates. We investigated the extent of this sampling bias in 26 years of population dynamics from 133 moth species. In a subset of 20 noctuid and geometrid species, daily numbers caught were positively correlated with temperature in 14 species, and negatively correlated with rainfall in 11 species. The strength of correlations varied between species, making it difficult to standardize catches to constant conditions. We overcame this by establishing how weather variation changed with time and duration of the flight period. Species flying later in the summer and for shorter periods experienced more variable temperatures, making sampling error greater for these species. Of the 133 moth species, those with shorter flight periods had greater population variability and more showed significant temporal density dependence. However, these effects were weak, which is encouraging because it suggests that population analyses of light trap data largely reflect factors other than sampling error.  相似文献   

7.
Summary Empirical associations among co-adapted traits such as body size and patterns of reproduction, development, and behavior are unknown for most animal species, despite numerous theories suggesting otherwise. One way to study these complex relationships is first to consider closely related species and then to generalize findings to other groups. In the present study, relationships among body size, reproductive patterns, development, and sociality were examined in 17 members of the family Canidae (canids). Large canids are more social than smaller species, and offspring of large species achieve independence and tend to breed first at a later age. Large females give birth to absolutely larger young, but relative to their own body weight they allocate fewer resources to bringing a large pup to term. Overall, sexual dimorphism in size is small to moderate, and this is associated with monogamous mating habits and paternal care of young.  相似文献   

8.
Altermatt F 《Ecology letters》2010,13(12):1475-1484
Changes in phenology are correlated with climate change. However, we still struggle to understand the traits making species susceptible to climate change, and the implications of species' reactions for communities and food webs. Butterflies and moths are an ecologically important group that have shown pronounced phenological changes over the last decades. Tests using a > 150-year dataset from 566 European butterfly and moth species demonstrated that variation in phenological change was strongly related to traits describing plant-herbivore interactions (larval diet breadth, diet composition), and the life cycle. The results indicate that climate change related shifts in phenology are correlated with the seasonal availability and palatability of food plants. Lepidopterans feeding on herbaceous plants showed smaller shifts in flight periods but larger increases in voltinism than lepidopterans feeding on woody plants. Consequently, the effect of herbivorous lepidopterans may increase in herb-rich grassland ecosystems under warmer conditions, and not in forest ecosystems.  相似文献   

9.
The most pervasive macroecological patterns concern (1) the frequency distribution of range size, (2) the relationship between range size and species abundance and (3) the effect of body size on range size. We investigated these patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this, we calculated geographical range size (no. of 10‐km square cells), ecological tolerance (no. of phytoclimatic units) and abundance (no. of sampled individuals) using a large database containing 3561 georeferenced records for 84 native species. For each species, we also calculated body mass and its ‘phylogenetic diversity’ on the basis of cladistic relationships. Frequency distribution of range size followed a log‐normal distribution as found in many other animal groups. However, a log‐normal distribution accommodated well the frequency distribution of ecological tolerance, a so far unexplored issue. Range size was correlated with abundance and ecological tolerance, thus supporting the hypothesis that a positive correlation between distribution and abundance is a reflection of interspecific differences in ecological specialization. Larger species tended to have larger ranges and broader ecological tolerance. However, contrary to what known in most vertebrates, not only small‐sized, but also many medium‐to‐large‐sized species exhibited great variability in their range size, probably because tenebrionids are not so strictly influenced by body size constraints (e.g. home ranges) as vertebrates. Moreover, in contrast to other animals, tenebrionid body size does not influence species abundances, probably because these detritivorous animals are not strongly regulated by competition. Finally, contrary to the assumption that rare species should be mainly found among lineages that split from basal nodes, rarity of a tenebrionid species was not influenced by the phylogenetic position of its tribe. However, lineages that split from more basal nodes had lower variability in terms of species geographical distribution, ecological tolerance and abundance, which suggests that lineages that split from more basal nodes are not only morphologically conservative but also tend to have an ecological ‘inertia’.  相似文献   

10.
A long-standing problem in ecology is to understand how the species–abundance distribution (SAD) varies with sampling scale. The problem was first characterized by Preston as the veil line problem. Although theoretical and empirical studies have now shown the nonexistence of the veil line, this problem has generated much interest in scaling biodiversity patterns. However, research on scaling SAD has so far exclusively focused on the relationship between the SAD in a smaller sampling area and a known SAD assumed for a larger area. An unsolved challenge is how one may predict species–abundance distribution in a large area from that of a smaller area. Although upscaling biodiversity patterns (e.g. species–area curve) is a major focus of macroecological research, upscaling of SAD across scale is, with few exceptions, ignored in the literature. Methods that directly predict SAD in a larger area from that of a smaller area have just started being developed. Here we propose a Bayesian method that directly answers this question. Examples using empirical data from tropical forests of Malaysia and Panama are employed to demonstrate the use of the method and to examine its performance with increasing sampling area. The results indicate that only 10-15% of the total census area is needed to adequately predict species abundance distribution of a region. In addition to species abundance distributions, the method also predicts well the regional species richness.  相似文献   

11.
Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long‐term changes in species abundance and body‐size distributions. In this study, we investigated long‐term (1911–2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger‐growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller‐growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size‐dependent responses of species to long‐term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size‐selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna.  相似文献   

12.
Bergmann's rule originally described a positive relationship between body size and latitude in warm‐blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology.  相似文献   

13.
Animal colour patterns long have provided information about key processes that drive the ecological and evolutionary dynamics of biological diversity. Theory and empirical evidence indicate that variation in colour patterns and other traits among individuals generally improves the performance of populations and species, for example by reducing predation risk, increasing establishment success, improving resilience to environmental change, and decreasing risk of extinction. However, little is known about whether and how variation in colour pattern among species is associated with variation in other phenotypic dimensions. To address this issue, we analysed associations of colour pattern with morphological, behavioural and life-history traits on the basis of data for nearly 400 species of noctuid moths. We found that moths with more variable colour patterns had longer flight activity periods, more diverse habitats and a greater number of host plant species than species with less variable colour patterns. Variable coloration in adult noctuid moths therefore can be considered as indicative of broader niches and generalist diets. Colour pattern variability was not significantly associated with overwintering stage or body size (wing span), and it was independent of whether the colour pattern of the larvae was non-variable, variable or highly variable. Colour pattern variation during the larval stage tended to increase as the duration of the flight activity period increased, but was independent of the length of the larval period, diet breadth and habitat use. The realization that information on colour pattern variation in adult moths, and possibly other organisms, offers a proxy for niche breadth and dietary generalization can inform management and conservation biology.  相似文献   

14.
Brown GP  Shine R 《Oecologia》2007,154(2):361-368
To predict the impacts of climate change on animal populations, we need long-term data sets on the effects of annual climatic variation on the demographic traits (growth, survival, reproductive output) that determine population viability. One frequent complication is that fecundity also depends upon maternal body size, a trait that often spans a wide range within a single population. During an eight-year field study, we measured annual variation in weather conditions, frog abundance and snake reproduction on a floodplain in the Australian wet-dry tropics. Frog numbers varied considerably from year to year, and were highest in years with hotter wetter conditions during the monsoonal season (“wet season”). Mean maternal body sizes, egg sizes and post-partum maternal body conditions of frog-eating snakes (keelback, Tropidonophis mairii, Colubridae) showed no significant annual variation over this period, but mean clutch sizes were higher in years with higher prey abundance. Larger females were more sensitive to frog abundance in this respect than were smaller conspecifics, so that the rate at which fecundity increased with body size varied among years, and was highest when prey availability was greatest. Thus, the link between female body size and reproductive output varied among years, with climatic factors modifying the relative reproductive rates of larger (older) versus smaller (younger) animals within the keelback population.  相似文献   

15.
1. The North Atlantic Oscillation (NAO) exerts considerable control on U.K. weather. This study investigates the impact of the NAO on butterfly abundance and phenology using 34 years of data from the U.K. Butterfly Monitoring Scheme (UKBMS).2. The study uses a multi-species indicator to show that the NAO does not affect overall U.K. butterfly population size. However, the abundance of bivoltine butterfly species, which have longer flight seasons, were found to be more likely to respond positively to the NAO compared with univoltine species, which show little or a negative response.3. A positive winter NAO index is associated with warmer weather and earlier flight dates for Anthocharis cardamines (Lepidoptera: Pieridae), Melanargia galathea (Lepidoptera: Nymphalidae), Aphantopus hyperantus (Lepidoptera: Nymphalidae), Pyronia tithonus (Lepidoptera: Nymphalidae), Lasiommata megera (Lepidoptera: Nymphalidae) and Polyommatus icarus (Lepidoptera: Lycaenidae). In bivoltine species, the NAO affects the phenology of the first generation, the timing of which indirectly controls the timing of the second generation.4. The NAO influences the timing of U.K. butterfly flight seasons more strongly than it influences population size.  相似文献   

16.
Antioxidants play an important role in protecting tissues against aging-associated oxidative damage and are thus prime candidates for relating physiological mechanisms to variation in life histories. We measured total antioxidant capacity, antioxidant response to stress, and levels of uric acid, vitamin E, and four carotenoids in 95 avian species, mostly passerines from Michigan or Panama. We compared antioxidant measures to seven variables related to life histories (clutch size, survival rate, incubation period, nestling period, basal metabolic rate, body mass, and whether the species lived in a tropical or temperate climate). Life-history-related traits varied over at least three statistically independent axes. Higher antioxidant levels were generally characteristic of more rapid development, lower survival rate, smaller body size, larger clutch size, and higher mass-adjusted metabolic rate, but the relationships of particular antioxidants with individual life-history traits showed considerable complexity. Antioxidant-life history associations differed between tropical and temperate species and varied with respect to taxonomic sampling. Vitamin E showed few relationships with life-history traits. Overall, our results partly support the hypothesis that antioxidant levels evolve to mirror free radical production. Clearly, however, the complex patterns of physiological diversification observed here result from the interplay of many factors, likely including not just investment in somatic maintenance but also phylogenetic constraint, diet, and other aspects of ecology.  相似文献   

17.
Life history traits (mean and maximum body length of females, number of embryos per brood = brood size, embryo diameter, number of broods per female, lifespan of females) for 302 populations of aquatic gammaridean amphipods, representing 214 species in 16 superfamilies, were reviewed. The variation of these traits, of lifetime potential fecundity (i.e. the number of embryos produced per female lifespan) and of reproductive potential (i.e. the number of embryos produced per female per year), with temperature (latitude), depth, salinity and superfamily, was investigated by various univariate and multivariate methods. Gammaridean amphipods comprise semelparous and iteroparous populations and species, with semiannual, annual, biannual or perennial life cycles. However, most gammarideans studied so far are iteroparous annuals. Body length explains most of the variation in brood size and embryo diameter. The reproductive potential may be increased by increasing body size for a constant breeding frequency, by increasing brood size at the expense of smaller embryos, by increasing breeding frequency for a constant lifespan at the expense of smaller individual broods and/or embryos, and by increasing longevity for a constant breeding frequency and brood size. Combinations of these different options constitute the life history patterns of gammarideans, which vary across superfamilies, latitude and depth, and cannot simply be explained by variations in body length. High latitude species were generally characterized by biannual or perennial life histories, large body size, delayed maturity, and single or few broods with many, relatively large embryos; converse sets of traits characterized low latitude species. Deep-living species had relatively smaller broods and embryos than their shallow-living relatives, yet did not produce more broods. However, different superfamilies dominated in different habitats. The importance of natural selection relative to phylogenetic (historical) and physiological constraints in the forging of these patterns is discussed.  相似文献   

18.
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km2, and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901–1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961–2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in “space‐for‐time” studies where measures of a species’ traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.  相似文献   

19.
Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto''s paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity.  相似文献   

20.
One of the least understood aspects of insect diversity in tropical rain forests is the temporal structuring, or seasonality, of communities. We collected 29,986 beetles of 1473 species over a 4-yr period (45 monthly samples), with the aim to document the temporal dynamics of a trophically diverse beetle assemblage from lowland tropical rain forest at Cape Tribulation, Australia. Malaise and flight interception traps were used to sample adult beetles at five locations at both ground and canopy levels. Beetles were caught throughout the year, but individual species were patchy in their temporal distribution, with the 124 more abundant species on average being present only 56 percent of the time. Climatic variables (precipitation, temperature, and solar radiation) were poorly correlated with adult beetle abundance, possibly because: (1) seasonality of total beetle abundance was slight; (2) the peak activity period (September–November) did not correspond to any climatic maxima or minima; or (3) responses were nonlinear owing to the existence of thresholds or developmental time-lags. Our results do not concur with the majority of tropical insect seasonality studies suggesting a wet season peak of insect activity, perhaps because there is no uniform pattern of insect seasonally for the humid tropics. Herbivores showed low seasonality and individual species' peaks were less temporally aggregated compared to nonherbivores. Canopy-caught and larger beetles (> 5 mm) showed greater seasonality and peaked later in the year compared to smaller or ground-caught beetles. Thus seasonality of adult beetles varied according to the traits of feeding ecology, body size, and habitat strata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号