首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang D 《PloS one》2012,7(3):e34459
A substantial proportion of the world's living species, including one-third of the reef-building corals, are threatened with extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider species' contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all 837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible, resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life.  相似文献   

2.
Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long-standing. We contend that progress in this direction will not be made until there is better understanding of cycad pollen, seed and tissue biology, which at the moment is limited to relatively few (<10%) species. We review what is known about germplasm (seed and pollen) storage and germination, together with recent developments in the application of contemporary technologies to tissues, such as isotype labelling, biomolecular markers and tissue culture. Whilst progress is being made, we conclude that an acceleration of comparative studies is needed to facilitate the integration of in situ and ex situ conservation programmes to better safeguard endangered cycads.  相似文献   

3.
Zoos have played a pivotal role in the successful reinforcement and reintroduction of species threatened with extinction, but prioritization is required in the face of increasing need and limited capacity. One means of prioritizing between species of equal threat status when establishing new breeding programs is the consideration of evolutionary distinctness (ED). More distinct species have fewer close relatives such that their extinction would result in a greater overall loss to the Tree of Life. Considering global ex situ holdings of birds (a group with a complete and well‐detailed evolutionary tree), we investigate the representation of at‐risk and highly evolutionarily distinct species in global zoo holdings. We identified a total of 2,236 bird species indicated by the Zoological Information Management System as being held in zoological institutions worldwide. As previously reported, imperiled species (defined as those possessing endangered or critically endangered threat status) in this database are less likely to be held in zoos than non‐imperiled species. However, we find that species possessing ED scores within the top 10% of all bird species are more likely to be held in zoos than other species, possibly because they possess unique characteristics that have historically made them popular exhibits. To assist with the selection of high priority ED species for future zoo conservation programs, we provide a list of imperiled species currently not held in zoos, ranked by ED. This list highlights species representing particular priorities for ex situ conservation planners, and represents a practical tool for improving the conservation value of zoological collections.  相似文献   

4.
More than 12 % of bird species are threatened with extinction. Numerous anthropogenic activities and processes are considered responsible for such declines, including tourism related activities. These activities often occur in global biodiversity hotspots but few studies consider the potential risks associated with tourism. The relative importance of tourism as a threat to birds was quantified using a global analysis of the threats facing critically endangered and endangered birds in the hotspots. Sixty-three critically endangered and endangered bird species are reportedly threatened by tourism. Among those 63 species, marine, coastal and aquatic birds are threatened more by tourism than was expected. Hotspots with the most species threatened by tourism are Polynesia–Micronesia and the Mediterranean Basin. This study uses individual threatening processes in a new way to characterise hotspots for conservation action, advancing previous identification criteria. Analysing hotspots in terms of the relative presence of individual threatening processes may help to more effectively direct future research in these priority regions.  相似文献   

5.
The genetic diversity and structure of four populations of the cycad Zamia loddigesii were studied throughout its range in Mexico. Allozyme electrophoresis of 15 loci was conducted. The mean number of alleles per locus was 1.80 ± 0.09, the percentage of polymorphic loci was 66.6 ± 5.4, and the expected heterozygosity was 0.266 ± 0.02. The results indicated that the genetic diversity was relatively higher, with respect to tropical tree species and other cycads. The genetic variation explained by differences among populations was 18%. On average, gene flow between paired populations was similar ( Nm  = 1.6) to other tropical forest trees and cycad species. Our results indicated that the geographical isolation among populations of Z. loddigesii generated allele loss, as well as a clinal variation in the frequencies of two loci ( MDH and MNR2 ), in relation to the latitudinal distribution of populations. The populations have become fragmented due to increasingly higher pressure of habitat conversion and disturbance. The importance of the establishment of sanctuaries and protected areas and a reduction in deforestation is highlighted in this research as a way of preserving the high genetic diversity of this and other endemic species.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 533–544.  相似文献   

6.
《PloS one》2015,10(8)
Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.  相似文献   

7.
The likely future extinction of various species will result in a decline of two quantities: species richness and phylogenetic diversity (PD, or ‘evolutionary history’). Under a simple stochastic model of extinction, we can estimate the expected loss of these quantities under two conservation strategies: An ‘egalitarian’ approach, which reduces the extinction risk of all species, and a ‘targeted’ approach that concentrates conservation effort on the most endangered taxa. For two such strategies that are constrained to experience the same expected loss of species richness, we ask which strategy results in a greater expected loss of PD. Using mathematical analysis and simulation, we describe how the strategy (egalitarian versus targeted) that minimizes the expected loss of PD depends on the distribution of endangered status across the tips of the tree, and the interaction of this status with the branch lengths. For a particular data set consisting of a phylogenetic tree of 62 lemur species, with extinction risks estimated from the IUCN ‘Red List’, we show that both strategies are virtually equivalent, though randomizing these extinction risks across the tip taxa can cause either strategy to outperform the other. In the second part of the paper, we describe an algorithm to determine how extreme the loss of PD for a given decline in species richness can be. We illustrate the use of this algorithm on the lemur tree.  相似文献   

8.
Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant–plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.  相似文献   

9.
Worldwide about one third of all plant species is estimated to be threatened with extinction. Plants are generally under-represented in conservation. However, the global strategy for plant conservation (GSPC) sets forth 16 targets to halt the current and continuing loss of plant diversity within a framework for actions at global, regional, national and local levels. Target 8 of the GSPC directs that at least 75 % of threatened plant species be present in ex situ collections by 2020, but this target is far from being met. By analyzing where gaps in ex situ collections and research exist relative to diversity hotspots of threatened species, it is possible to identify and prioritize action. We undertake a gap analysis of ex situ collection needs in the genus Magnolia, a relatively well-known and valuable genus. Results indicate three main areas of biodiversity (China, Vietnam and Colombia) for the endangered Magnolia taxa. The present paper provides a critical overview of recent conservation activities carried out in the genus Magnolia throughout the world, focusing on genetic diversity analyses of the species.  相似文献   

10.
Eight newly developed polymorphic microsatellite markers are presented for Abies guatemalensis Rehder, an endangered tree endemic to Mexico and Central America. These microsatellite markers are useful for evaluating the population genetics of the species which is threatened by greenery poaching in natural populations. Novel conservation plans are needed to secure a more sustainable use strategy and to preserve the genetic diversity of the species.  相似文献   

11.
As ancient gymnosperm and woody plants, cycads have survived through dramatic tectonic activities, climate fluctuation, and environmental variations making them of great significance in studying the origin and evolution of flora biodiversity. However, they are among the most threatened plant groups in the world. The principal aim of this review is to outline the distribution, diversity, and conservation status of Cycas in China and provide suggestions for conservation practices. In this review, we describe the taxonomy, distribution, and conservation status of Cycas in China. By comparing Chinese Cycas species with its relatives worldwide, we then discuss the current genetic diversity, genetic differentiation of Cycas, and try to disentangle the potential effects of Quaternary climate changes and topographical events on Cycas. We review conservation practices from both researchers and practitioners for these rare and endangered species. High genetic diversity at the species level and strong genetic differentiation within Cycas have been observed. Most Cycas species in southwest China have experienced population retreats in contrast to the coastal Cycas's expansion during the Quaternary glaciation. Additionally, human activities and habitat fragmentation have pushed these endangered taxa to the brink of extinction. Although numerous efforts have been made to mitigate threats to Cycas survival, implementation and compliance monitoring in protection zones are currently inadequate. We outline six proposals to strengthen conservation measures for Cycas in China and anticipate that these measures will provide guidelines for further research on population genetics as well as conservation biology of not only cycads but also other endangered species worldwide.  相似文献   

12.
Although South African cycads are known to be declining in the wild, there is at present no broad-scale, quantitative analysis to support this view. In this study the fate of 626 individual cycads was assessed from 107 repeat photographs taken at 53 locations over three time-steps (broadly 1940s, mid-1990s and 2014). Of the cycads photographed in the 1940s, 78 % survived to the mid-1990s. By 2014, however, only 16 % of the original cycads remained. The Limpopo Province had the highest rate of cycad loss over the recorded period, followed by the Eastern Cape and KwaZulu-Natal. Gauteng and Mpumalanga had the lowest rate of cycad loss. In general, cycad losses were greatest on land under private ownership when compared to communal land and conservation areas. However, cycad loss as a result of damage sustained due to traditional medicine collection was highest on communal lands. Continued declines in most of the studied cycad populations are a concern due to the potential Allee effects this may introduce. While legislation to protect cycads is in place, enforcement is difficult given the spatially extensive and often remote and patchy distribution of cycad populations. Conservation approaches that work actively with farmers to protect cycads on their property, as well as education about sustainable traditional medicine collection practices in communal areas have the best chance of ensuring the viability of wild cycad populations.  相似文献   

13.
Mammals contribute to important ecosystem processes and services, but many mammalian species are threatened with extinction. We compare how global patterns in three measures of mammalian diversity—species richness, phylogenetic diversity (PD) and body mass variance (BMV)—would change if all currently threatened species were lost. Given that many facets of species'' ecology and life history scale predictably with body mass, the BMV in a region roughly reflects the diversity of species'' roles within ecosystems and so is a simple proxy for functional diversity (FD). PD is also often considered to be a proxy for FD, but our results suggest that BMV losses within ecoregions would be much more severe than losses of PD or species richness, and that its congruence with the latter two measures is low. Because of the disproportionate loss of large mammals, 65 per cent of ecoregions would lose significantly more BMV than under random extinction, while only 11 per cent would lose significantly more PD. Ecosystem consequences of these selective losses may be profound, especially throughout the tropics, but are not captured by PD. This low surrogacy stresses a need for conservation prioritization based on threatened trait diversity, and for conservation efforts to take an ecosystem perspective.  相似文献   

14.
Aim To determine whether life‐history characters that affect population persistence (e.g. habit and life span) and those that influence reproductive success (e.g. sexual system and fruit type) are non‐randomly correlated with extinction risk (i.e. threat category) in the Australian flora (c. 19,000 species, of which c. 14% is threatened). To identify patterns that present useful conservation directions. To understand patterns of extinction risk in the Australian flora at a broad scale. Location Continental Australia. Methods A country‐wide exploration of four life‐history characters in the Australian flora (n = 18,822 species) was undertaken using reference texts, expert opinion, herbarium records and field work. For each character and threat‐category combination, a G‐test (using a log‐linear model) was performed to test the null hypothesis that the two factors were independent in their effects on count. A generalized linear model (GLM) with a logit link and binomial error distribution was constructed with the proportion of taxa in each extinction risk category as the response variable and the habit, sex and fruit‐type characters as explanatory terms. In a separate approach, we investigated patterns across the threat categories of non‐endangered extant, endangered, and extinct using a multinomial model. We examined whether or not species‐poor genera were more likely to contain threatened or extinct species than species‐rich genera. A GLM with a binomial error distribution and logit link function was constructed to obtain a weighted regression on the proportion of species listed as extinct or endangered within a genus versus the log of the size of the genus. We also used a supertree analysis and character tracing to investigate the role of phylogeny on extinction risk. Results We found that the Australian flora is primarily composed of bisexual shrubs with dry‐dehiscent fruits. Dioecious breeding systems (separate female and male flowers on separate plants) in many floras are the predominant unisexual system, but in Australia there are unexpectedly high levels of monoecy (separate female and male flowers on the same plant). Within the extinct data set of 31 species we detected a significant departure from that expected for habit but not for life span, sexual system or fruit type. There are significantly fewer trees on the extinct list than expected. This may reflect the greater resilience of trees than of other growth habits to extinction processes as well as the observation time‐frame. Within the endangered data set of 450 species we found significant differences in the representation of the observed characters from that expected within sex systems and fruit types. We show that, depending on the life form, unisexual breeding systems can be significantly and positively associated with endangered species compared with non‐threatened species. For example, there are more monoecious species than expected by chance among the tree species listed as endangered but fewer among the herbaceous life forms. Threat category was found to be non‐randomly clustered in some clades. Main conclusions Life‐history characters in certain combinations are predictive of extinction risk. Phylogeny is also an important component of extinction risk. We suggest that specific life‐history characters could be used for conservation planning and as an early warning sign for detecting vulnerability in lists of species.  相似文献   

15.
This study evaluates how a modelling approach to determine areas of suitable habitat for the Critically Endangered Albany cycad Encephalartos latifrons can assist in systematic conservation planning for this and other rare and threatened cycads. A map distinguishing suitable from unsuitable habitat for E. latifrons was produced and important environmental predictors (climate, geology, topography and vegetation) influencing the suitable habitat were estimated. The maximum entropy (MaxEnt) modelling technique was chosen for this study as it has consistently performed well compared with alternative modelling methods and is also an appropriate model choice when the sample size is small and locality records are relatively few. Predicted habitat suitability showed that some locations chosen for translocation and restoration of E. latifrons specimens are not suitable. This revealed that modelling suitable habitat can guide relocation and regeneration of E. latifrons and perhaps other threatened cycads with restricted distributions and few locality records. The species distribution model constructed for E. latifrons is the first reported habitat model for a Critically Endangered cycad in South Africa. The results may be incorporated into conservation planning and structured decision-making about translocations and restoration programmes involving vulnerable cycads, which are among the most threatened organisms globally.  相似文献   

16.
The significance of co‐evolution over ecological timescales is well established, yet it remains unclear to what extent co‐evolutionary processes contribute to driving large‐scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long‐term co‐evolutionary hypotheses relate to proposed interactions between herbivorous non‐avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co‐occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright‐coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur–cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified – GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co‐evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co‐evolutionary interactions between cycads and herbivorous dinosaurs – diffuse co‐evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.  相似文献   

17.
A sixth great mass extinction is ongoing due to the direct and indirect effects of human pressures. However, not all lineages are affected equally. From an anthropocentric perspective, it is often purported that humans hold a unique place on Earth. Here, we show that our current impacts on the natural world risk realizing that expectation. We simulated species loss on the mammalian phylogenetic tree, informed by species current extinction risks. We explored how Homo sapiens could become isolated in the tree if species currently threatened with extinction disappeared. We analyzed correlates of mammal extinctions risks that may drive this isolation pattern. We show that, within mammals, and more particularly within primates, extinction risks increase with the number of known threat types, and decrease with geographic range size. Extinctions increase with species body mass, trophic level, and the median longitudinal extent of each species range in mammals but not within primates. The risks of extinction are frequently high among H. sapiens close relatives. Pruning threatened primates, including apes (Hominidae, Hylobatidae), from the tree of life will lead to our species being among those with the fewest close relatives. If no action is taken, we will thus not only lose crucial biodiversity for the preservation of Earth ecosystems, but also a key living reference to what makes us human.  相似文献   

18.
The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides.  相似文献   

19.
20.
Due to the current environmental crisis, many animal species face extinction problems. Amphibian populations have been affected by this crisis. Our goal is to study amphibian species diversity in Chiapas, which has 7.6% of the endemic amphibians in Mexico and 53 protected areas. Only 58% of the protected areas have management plans or information on their resident amphibians. We aim to determine the extent of protection provided by the network of natural areas for the conservation of amphibian species in the state and to discuss the effectiveness of this protection. Therefore, we compiled a georeferenced database of 112 amphibian species in Chiapas to create each distribution model. In addition, we carried out representativeness, beta diversity, and species richness analyses. As a result, we obtained a high degree of representativeness for the records and species distribution models. However, we found a decrease in the richness of amphibians involving 20% of total species, 13% of endemics, 18% threatened according to NOM-059, and 31% threatened according to IUCN between 1800 and 2020 and 1980–2020. We also identified two biodiversity hotspots in the Sierra Madre de Chiapas and the Northern Highlands physiographic regions. Finally, based on potential distributions, we found more endemic and threatened species outside protected natural areas than inside them. Our results give a broader picture of how amphibian richness is distributed in Chiapas. This information can help to prioritize conservation efforts toward those areas rich in threatened or endemic species, such as the Northern Mountains Hotspot we identified in northern Chiapas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号