首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High degree of population subdivision in a widespread amphibian   总被引:5,自引:0,他引:5  
In general, amphibians are known to exhibit a higher degree of population subdivision than any other major animal taxa, but large-scale population genetic surveys of widely distributed species are still scarce, especially in the Eurasian continent. Using microsatellite markers and mitochondrial DNA sequences, we investigated the large-scale population genetic structure of the common frog (Rana temporaria)--one of the most widespread amphibians of the Palearctic region. Analyses of cytochrome b sequences revealed evidence for two distinct lineages inhabiting western and eastern parts of Europe. The separation of these lineages c. 700,000 years ago may have been induced by the onset of the Middle Pleistocene continental glaciations. Analyses of the variability of microsatellite loci within each of the clades revealed evidence for evolution of a high degree of population subdivision (FST approximately 0.23) even in northern Fennoscandia, colonized less than 10,000 years ago. The high level of substructuring is puzzling in the face of an apparently high dispersal capacity, as evidenced by the rather rapid recolonization of northern Europe. This suggests that processes other than restricted dispersal capacity need to be explored as explanations for the high degree of population subdivision in amphibians. The colonization of northern Europe has been accompanied by loss of genetic variability as evidenced by decreasing levels of intrapopulational genetic variability in microsatellite loci from south to north across Europe.  相似文献   

2.
Species with narrow environmental tolerances are often distributed within fragmented patches of suitable habitat, and dispersal among these subpopulations can be difficult to directly observe. Genetic data can help quantify gene flow between localities, which is especially important for vulnerable species with a disjunct range. The Shenandoah salamander (Plethodon shenandoah) is a federally endangered species known only from three mountaintops in Virginia, USA. To reconstruct the evolutionary history and population connectivity of this species, we generated both mitochondrial and nuclear data using sequence capture from individuals collected across all three mountaintops. Applying population and landscape genetic methods, we found strong population structure that was independent of geographic distance. Both the nuclear markers and mitochondrial genomes indicated a deep split between the most southern population and the genetically similar central and northern populations. Although there was some mitochondrial haplotype‐splitting between the central and northern populations, there was admixture in nuclear markers. This is indicative of either a recent split or current male‐biased dispersal among mountain isolates. Models of landscape resistance found that dispersal across north‐facing slopes at mid‐elevation levels best explain the observed genetic structure among populations. These unexpected results highlight the importance of incorporating landscape features in understanding and predicting the movement and fragmentation of this range‐restricted salamander species across space.  相似文献   

3.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

4.
Historical factors (colonization scenarios, demographic oscillations) and contemporary processes (population connectivity, current population size) largely contribute to shaping species’ present‐day genetic diversity and structure. In this study, we use a combination of mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic oscillations and present‐day gene flow dynamics in determining the genetic diversity and structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of variation. In contrast, microsatellites revealed five major genetic lineages with admixture patterns at their boundaries. Approximate Bayesian computation analyses and linear models indicated that the five lineages likely underwent separate evolutionary histories and can be tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders likely represent zones of secondary contact following expansion from multiple refugia. Finally, we did not find genetic evidence of sex‐biased dispersal. This work highlights the importance of integrating past evolutionary processes and present‐day gene flow and dispersal dynamics, together with multilocus approaches, to gain insights into what shaped the current genetic attributes of amphibians living in montane habitats.  相似文献   

5.
Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.  相似文献   

6.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

7.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

8.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

9.
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.  相似文献   

10.
An increasing body of studies of widely distributed, high latitude species shows a variety of refugial locations and population genetic patterns. We examined the effects of glaciations and dispersal barriers on the population genetic patterns of a widely distributed, high latitude, resident corvid, the gray jay (Perisoreus canadensis), using the highly variable mitochondrial DNA (mtDNA) control region and microsatellite markers combined with species distribution modeling. We sequenced 914 bp of mtDNA control region for 375 individuals from 37 populations and screened seven loci for 402 individuals from 27 populations across the gray jay range. We used species distribution modeling and a range of phylogeographic analyses (haplotype diversity, ΦST, SAMOVA, FST, Bayesian clustering analyses) to examine evolutionary history and population genetic structure. MtDNA and microsatellite markers revealed significant genetic differentiation among populations with high concordance between markers. Paleodistribution models supported at least five potential areas of suitable gray jay habitat during the last glacial maximum and revealed distributions similar to the gray jay's contemporary during the last interglacial. Colonization from and prolonged isolation in multiple refugia is evident. Historical climatic fluctuations, the presence of multiple dispersal barriers, and highly restricted gene flow appear to be responsible for strong genetic diversification and differentiation in gray jays.  相似文献   

11.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   

12.
Dispersal is crucial for gene flow and often determines the long‐term stability of meta‐populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark–recapture observations that are suspected to be poor predictors of long‐distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark–recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ~20 km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ~10 km.  相似文献   

13.
The oriental fruit moth (OFM) Grapholita molesta is one of the most destructive orchard pests. Assumed to be native to China, the moth is now distributed throughout the world. However, the evolutionary history of this moth in its native range remains unknown. In this study, we explored the population genetic structure, dispersal routes and demographic history of the OFM in China and South Korea based on mitochondrial genes and microsatellite loci. The Mantel test indicated a significant correlation between genetic distance and geographical distance in the populations. Bayesian analysis of population genetic structure (baps ) identified four nested clusters, while the geneland analysis inferred five genetic groups with spatial discontinuities. Based on the approximate Bayesian computation approach, we found that the OFM was originated from southern China near the Shilin area of Yunnan Province. The early divergence and dispersal of this moth was dated to the Penultimate glaciation of Pleistocene. Further dispersal from southern to northern region of China occurred before the last glacial maximum, while the expansion of population size in the derived populations in northern region of China occurred after the last glacial maximum. Our results indicated that the current distribution and structure of the OFM were complicatedly influenced by climatic and geological events and human activities of cultivation and wide dissemination of peach in ancient China. We provide an example on revealing the origin and dispersal history of an agricultural pest insect in its native range as well as the underlying factors.  相似文献   

14.
Habitat fragmentation is an increasing threat to wildlife species across the globe and it has been predicted that future biodiversity will decrease rapidly without the intervention of scientifically-based management. In this study we have applied a landscape genetics approach to suggest a network design that will maintain connectivity among populations of the endangered mountain Nyala (Tragelaphus buxtoni) in the fragmented highlands of Ethiopia. DNA was obtained non-invasively from 328 individuals and genetic population structure and gene flow were estimated using 12 microsatellite markers. In addition, a 475-bp segment of the mitochondrial control region was sequenced for 132 individuals. Potential dispersal corridors were determined from least-cost path analysis based on a habitat suitability map. The genetic data indicated limited gene flow between the sampled mountain Nyala populations of the Bale Massif and the Arsi Massif. The genetic differentiation observed among five sampling areas of the Bale Massif followed a pattern of isolation by distance. We detected no impact of habitat resistance on the gene flow. In the future, however, the current expanding human population in the highlands of Ethiopia may reduce the current mountain Nyala habitat and further limit migration. Hence, maintaining habitat connectivity and facilitating survival of stepping-stone populations will be important for the future conservation of the species. The approach used here may also be useful for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment.  相似文献   

15.
Wildlife populations have been introduced to new areas by people for centuries, but this human‐mediated movement can disrupt natural patterns of genetic structure by altering patterns of gene flow. Insular populations are particularly prone to these influences due to limited opportunities for natural dispersal onto islands. Consequently, understanding how genetic patterns develop in island populations is important, particularly given that islands are frequently havens for protected wildlife. We examined the evolutionary origins and extent of genetic structure within the introduced island population of red squirrels (Sciurus vulgaris) on the Channel Island of Jersey using mitochondrial DNA (mtDNA) control region sequence and nuclear microsatellite genotypes. Our findings reveal two different genetic origins and a genetic architecture reflective of the introductions 120 years ago. Genetic structure is marked within the maternally inherited mtDNA, indicating slow dispersal of female squirrels. However, nuclear markers detected only weak genetic structure, indicating substantially greater male dispersal. Data from both mitochondrial and nuclear markers support historic records that squirrels from England were introduced to the west of the island and those from mainland Europe to the east. Although some level of dispersal and introgression across the island between the two introductions is evident, there has not yet been sufficient gene flow to erase this historic genetic “footprint.” We also investigated if inbreeding has contributed to high observed levels of disease, but found no association. Genetic footprints of introductions can persist for considerable periods of time and beyond traditional timeframes of wildlife management.  相似文献   

16.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

17.
To understand the relationship between social behaviour and gene distribution, we used microsatellite markers to resolve the spatial genetic structure of the sika deerCervus nippon Temminck, 1838 population on Kinkazan Island, a small island (9.6 km2) in northern Japan. We obtained 177 samples of deer which correspond to about 30% of the total population on the island. 126 were from a local population where each deer was individually identified, while 51 from other area on the island. Although there were no apparent geographical barriers on the island, the sika deer population showed local differentiation in its genetic composition. By comparing allele-sharing rates between gender and social categories, we demonstrated a higher genetic relatedness within males in a local group. The Assignment Index (AI) of each sex within a local group showed similar distributions. None of our analyses indicated a lower genetic relatedness among males than females, which contradicted our predictions based on the dispersal behaviour of males. Considering other factors, the results suggest that the range of male dispersal is quite limited on this island.  相似文献   

18.
19.
Coastal and demersal chondrichthyans, such as the small-spotted catshark, are expected to exhibit genetic differentiation in areas of complex geomorphology like the Mediterranean Basin because of their limited dispersal ability. To test this hypothesis, we used a fragment of the mitochondrial cytochrome c oxidase subunit I gene and 12 nuclear microsatellite loci in order to investigate the genetic structure and historical demography of this species, and to identify potential barriers to gene flow. Samples were collected from the Balearic Islands, the Algerian Basin, the Ionian Sea, the Corinthian Gulf and various locations across the Aegean Sea. Additional sequences from the Atlantic and the Levantine Basin retrieved from GenBank were included in the mitochondrial DNA analysis. Both mitochondrial and nuclear microsatellite DNA data revealed a strong genetic subdivision, mainly between the western and eastern Mediterranean, whereas the Levantine Basin shared haplotypes with both areas. The geographic isolation of the Mediterranean basins seems to enforce the population genetic differentiation of the species, with the deep sea acting as a strong barrier to its dispersal. Contrasting historical demographic patterns were also observed in different parts of the species'' distribution, most notably a population growth trend in the western Mediterranean/Atlantic area and a slight decreasing one in the Aegean Sea. The different effects of the Pleistocene glacial periods on the habitat availability may explain the contrasting demographic patterns observed. The current findings suggest that the small-spotted catshark exhibits several genetic stocks in the Mediterranean, although further study is needed.  相似文献   

20.
The influence of Pleistocene climatic oscillations on shaping the genetic structure of Asian biota is poorly known. The Japanese pipistrelle bat occurs over a wide range in eastern Asia, from Siberia to Japan. To test the relative impact of ancient and more recent events on genetic structure in this species, we combined mitochondrial (cytochrome b) and microsatellite markers to reconstruct its phylogeographic and demographic history on continental China and its offshore islands, Hainan Island and the Zhoushan Archipelago. Our mitochondrial DNA tree recovered two divergent geographical clades, indicating multiple glacial refugia in the region. The first clade was mainly confined to Hainan Island, indicating that gene flow between this population and the continent has been restricted, despite being repeatedly connected to the mainland during repeated glacial episodes. By contrast, haplotypes sampled on the Zhoushan Archipelago were mixed with those from the mainland, suggesting a recent shared history of expansion. Although microsatellite allele frequencies showed clear discontinuities across the sampling range, supporting the current isolation of both Hainan Island and the Zhoushan Archipelago, we also found clear evidence of more recent back colonization, probably via post‐glacial expansion or, in the latter case, occasional long distance dispersal. The results obtained highlight the importance of using multiple sets of markers for teasing apart the roles of ancient and more recent events on population genetic structure. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 582–594.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号