首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

2.
The sub-arctic Lake Fjellfrøsvatn, northern Norway, has two morphs of Arctic charr that are reproductively isolated because they spawn 5 months apart. The smaller morph (≤14 cm LF ) is confined to the profundal zone of the lake and the larger morph is mainly littoral. Three hypotheses were tested: (i) the offspring of the profundal Arctic charr grow slower than the offspring of the littoral Arctic charr under identical conditions, thus indicating a genetic basis for the slow growth of the profundal Arctic charr in the wild; (ii) the wild phenotypes of the two morphs are morphometrically different and the differences are persistent in the offspring; (iii) the offspring of the two morphs have different behaviour traits under similar treatments. The first hypothesis was rejected; offspring of the profundal morph grew slightly better than offspring of the littoral morph at 10° C in the laboratory. The second and third hypotheses were supported by the data. Wild-caught fish of the two morphs differed in several morphometric characters and most of the differences persisted in the offspring. In the laboratory, offspring of the littoral morph were more active, more aggressive and more pelagic than offspring of the profundal morph and naive offspring of the profundal morph were more effective in eating live chironomid larvae than were offspring of the littoral morph. The data for morphometry and behaviour, but not growth, provide evidence for genetic differences between the two Arctic charr morphs of Fjellfrøsvatn.  相似文献   

3.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

4.
Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfr?svatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14cm, while the littoral charr grow to 40cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfr?svatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfr?svatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.  相似文献   

5.
Significant genetic differences ( F ST = 0·032) were found between littoral and profundal morphs of Arctic charr Salvelinus alpinus from Fjellfrøsvatn, northern Norway, using microsatellite DNA analysis. The morphs had strong reproductive isolation in time and space; the segregation of a separate profundal morph is rare in postglacial lakes.  相似文献   

6.
In polymorphic populations morphs usually diverge in morphology, ecology and life history, which is most likely driven by adaptations to different environments or resources. Sympatric morphs may develop differences in several life history traits to be able to maximize fitness in alternative niches and habitats. Here, the contrasting life history traits of three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs in a deep and oligotrophic lake in sub-arctic Norway are addressed. The charr morphs differ in spawning habitat and trophic niche. One is a littoral spawning morph that feeds on benthic invertebrates and zooplankton in the littoral and pelagic zones (referred to as the LO-morph), and two other are profundal spawning morphs that either utilize profundal soft bottom benthos as food resource (the PB-morph) or are piscivorous (the PP-morph). The LO-morph typically had intermediate life-history traits relative to the two profundal morphs that had highly contrasting life history traits, especially in growth and age and size of maturity. The PB-morph matured at a young age (~3 years) and at a small body size (~8.5 cm), thereby increasing their fitness by investing in reproduction early in life, which results in a short generation time and decreased probability of being predated before first reproduction. The PP-morph on the other hand, matured at an old age (~9.2 years) and a large body size (~26 cm), thereby increasing their fitness by investing in somatic growth to enhance initial fecundity, and also to reach a large body size profitable for piscivory. The different trade-off regime between the PP- and PB-morphs seems to be caused by adaptation to alternative trophic niches, and appears to be an important factor for the co-occurrence of the two sister-morphs in the profundal zone.  相似文献   

7.
Polymorphism and speciation in Arctic charr   总被引:11,自引:0,他引:11  
The Arctic charr Salvelinus alpinus exhibits 1–4 sympatric morphs in postglacial lakes, of which one or two are epibenthic zoobenthos feeders, one is a limnetic planktivore and one is a piscivorous form. In addition, northern rivers support partly migratory populations with anadromous and freshwater resident fish. The morphs vary in their coloration, morphology, life history, behaviour and genetic characteristics. The morphs usually differentiate according to their ontogenetic stage at maturity, which parallels paedomorphism in amphibians. The young usually start as epibenthic zoobenthivores, but may become pelagic at a certain size according to the predation risk experienced at that time. From a length of > 20–25 cm, charr start to become piscivorous. The proportion of piscivorous fish increases with increasing body size. In partly anadromous populations, fish that mature before smolting become freshwater resident, the others anadromous. In some rivers, the morphs occupy separate niches (epibenthic and limnetic), from emergence onwards. The morphs exhibit different degrees of reproductive isolation that vary from a high degree of interbreeding to complete isolation. Usually, they spawn within morph (assortative mating), but alternative male mating behaviour (sneaking, fighting) may occur in stream‐spawning populations and at great depths in lakes. Morphologically specialized morphs appear to feed more effectively than intermediate forms, and selection according to feeding mode, site fidelity and associated assortative mating are prerequisites for the evolution of the different morphs. Charr morphs develop into stable feeding niches under conditions of intense intraspecific competition when there is little competition with other species. Sympatric morphs exhibit different degrees of speciation, but similar morphs in different systems are not individual species because of (1) their polyphyletic origin, (2) the supporting systems are often young, transient environments making the future situation for the populations uncertain, and (3) the genetic differentiation among morphs is low. Sympatric morphs may interbreed and produce fertile hybrids. Nevertheless, sympatric charr morphs should be managed as separate species. Changes in the natural conditions or human impacts to which the morphs are adapted will have a strong influence on the persistence and survival of each different morph.  相似文献   

8.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

9.
Deep-water morphs of lake charr, Salvelinus namaycush, are found, with one exception, in four of the largest lakes in the world: lakes Superior and Mistassini (QC) and Great Bear and Slave lakes. This paper advances a hypothesis for resource polymorphisms involving two types of deep-water morph, one of which is characteristic of the humper and the other of the siscowet charrs of Lake Superior. My hypothesis states that, first, the humper, or a humper-like morph, diverged postglacially in sympatry from the ancestral common (shallow-water) lake charr and became a feeding specialist on Mysis relicta. Second, in at least two of the four lakes the siscowet, or a siscowet-like charr, diverged as a feeding specialist on postglacially derived forms of deep-water ciscoes. In Lake Superior a successional process may have resulted in dominance of the siscowet at the expense of the humper charr. I concur with a previous inference that the one occurrence of a deep-water charr in a small lake (the above exception) represents emigration from Lake Superior. I further infer that this event involved an early humper charr, which implies that this morphotype had differentiated in Lake Superior in less than 1,900 year. I suggest that innate differences in plasticity, breeding behavior and assortive mating, and philopatry account for why Arctic charr isolate readily in small lakes whereas lake charr do not. My hypothesis assumes divergence of deep-water morphs occurred postglacially, an idea consistent with genetic and biogeographical evidence.  相似文献   

10.
We assessed reproductive status, fecundity, egg size, and spawning dynamics of shovelnose sturgeon Scaphirhynchus platorynchus in the lower Platte River. Shovelnose sturgeon were captured throughout each year during 2011 and 2012 using a multi‐gear approach designed to collect a variety of fish of varying sizes and ages. Fish were collected monthly for a laboratory assessment of reproductive condition. Female shovelnose sturgeon reached fork length at 50% maturity (FL50) at 547 mm and at a minimum length of 449 mm. The average female spawning cycle was 3–5 years. Mean egg count for adult females was 16 098 ± 1103 (SE), and mean egg size was 2.401 ± 0.051 (SE) mm. Total fecundity was positively correlated with length (r2 = 0.728; P < 0.001), mass (r2 = 0.896; P < 0.001), and age (r2 = 0.396; P = 0.029). However, fish size and age did not correlate to egg size (P > 0.05). Male shovelnose sturgeon reached FL50 at 579 mm and at a minimum length of 453 mm. The average male spawning cycle was 1–2 years. Reproductively viable male and female sturgeon occurred during the spring (March–May) and autumn (September–October) in both years, indicating spring and potential autumn spawning events. Shovelnose sturgeon in the lower Platte River are maturing at a shorter length and younger age compared to populations elsewhere. Although it is unknown if the change is plastic or evolutionary, unfavorable environmental conditions or over‐harvest may lead to hastened declines compared to other systems.  相似文献   

11.
Interspecific morph variations in trophic morphology related to skull-bones and head traits is associated to ecological segregation of Arctic charr morphs (genus Salvelinus) in two sub-arctic lakes (Fjellfrøsvatn and Skogsfjordvatn, Norway). The replicated morph pair, the profundal spawning benthivorous PB-morph and the littoral spawning omnivorous LO-morph of Arctic charr, diverge along the shallow-deep-water resource axis. In Skogsfjordvatn there is also a profundal spawning piscivorous PP-morph. The PB-morphs from both lakes have similar skull-bone traits and head morphology such as elongated jaw-bones, small opercular bones and relatively longer heads. The PP-morph also has an elongated head, relatively small opercular bones as well as larger jaw-bones. In contrast, the LO-morphs in both lakes have shorter jaw-bones, larger opercular bones in addition to relatively small heads. However, some small non-parallel differences exist among the morphs from the two lakes. Overall, all profundal morphs (PB and PP) have relatively similar skull-bone structures, suggesting adaptations to the deep-water environment but also to their separated dietary niches. There is strong evidence for parallel evolution with some local adaptations in skull-bones and head morphology of the PB-morph and the LO-morph from separate lakes.  相似文献   

12.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
Two previously unknown profundal dwelling charr morphs of the genus Salvelinus from Lake Kronotskoe are described in this article. According to their lifestyle peculiarities, these morphs were named the “bigmouth charr” and “smallmouth charr.” The former group is near-bottom benthivorous, while the latter one inhabits the water column and occupies the omnivorous niche. Bigmouth and smallmouth charrs are distinguished from the rest of the sympatric charr morphs by their smaller size, shorter snout, larger eyes, as well as by several craniological traits and lower parasite abundance. Spawning of both morphs takes place directly in the profundal zone and lasts from late October to February. Additional studies are required to determine the systematic status of the new morphs.  相似文献   

14.
The relationships among time of spawning, incubation temperature, timing of first feeding and early growth were examined in four sympatric morphs of Arctic charr in Thingvallavatn, Iceland. Large benthivorous charr spawn in July-August at sites with cold ground-water flow. Planktivorous and piscivorous charr spawn in September-November and are not confined to ground-water sites. The spawning of small benthivorous charr overlaps with that of other morphs. Progeny of large benthivorous charr start feeding 2-3 months earlier than the progeny of autumn spawners. This results in differential size distribution and growth rates of young in the spring.  相似文献   

15.
Nutritional deficiency associated with reduced thiamine (vitamin B1) and reduced natural reproduction of salmonid species in the Great Lake Region is well established. The negative relationship between egg thiamine and lipid concentration to post-hatch larval growth and survival in teleost species, coupled with the limited research of egg thiamine in Acipenseriform species of conservation concern, including lake sturgeon, indicates that study of thiamine concentrations lake sturgeon eggs is warranted. Eggs were collected from females (N = 12) during the early and late portion of the spawning run in 2007 in a wild population from Black Lake, MI. Concentrations of thiamine, lipid and fatty acid concentration were measured along with female biological information (body size and egg size) and characteristics of larvae at hatch. Significant differences in egg thiamine concentrations were observed between early- and late-spawning females (mean ± SD: 2.36 nmol·g−1 ± 1.09 vs. 0.73 ± 0.25 nmol·g−1, W = 0.05, p < .01). No significant relationships were observed between female body size or egg size and egg lipid or thiamine concentration. Differences in lipid and thiamine concentrations were not predictive of larval body size or yolk sac volume at hatch. Total and phosphorylated thiamine were correlated with n-3 polyunsaturated fatty acids, suggesting that dietary items were likely partially responsible for provisioning of essential compounds. Given the negative effects of low egg thiamine concentration on larval survival in other fish species globally, results indicate that further research in areas of nutrient acquisition and thiamine effects on larval survival, natural recruitment, and hatchery feeding strategies is warranted for lake sturgeon.  相似文献   

16.
Abstract 1. Polymorphism has been described for a number of herbivorous insects, but little is known about whether differences in body colour cause fitness differences. In Chorthippus parallelus, three main colour morphs occur, namely brown, green, and dorsally striped. 2. The present study examined colour morph abundances and morph‐related differences in body size, oviposition rate, and offspring numbers in females of C. parallelus collected in 15 montane grasslands. The study also examined the effect of plant species richness, composition, community productivity, and solar radiation on colour morph frequency and fitness. 3. The relative frequencies of the three colour morphs was 31.7% (brown), 33.1% (green), and 35.2% (dorsally striped), but the morphs were not evenly distributed across the 15 sites. 4. There was no effect of the habitat variables on the distribution of the green and the striped morph in the study sites, however 80% of the variation in the abundances of the brown morph was explained by plant species richness and composition. 5. Grasshopper size was equal among the morphs. Brown females laid significantly more egg pods than the green and dorsally striped morphs. There were no significant differences in offspring numbers among the colour morphs. 6. Body colour in C. parallelus seems to be a fitness‐relevant trait, raising the question of the evolutionary maintenance of polymorphism.  相似文献   

17.
Pairs of obligate social parasites and their hosts, where some of the parasites have recently diverged from their host through intraspecific social parasitism, provide intriguing systems for studying the modes and processes of speciation. Such speciation, probably in sympatry, has also been propounded in the ant Myrmica rubra and its intraspecific social parasite. In this species, parasitism is associated with queen size dimorphism, and the small microgyne has become a social parasite of the large macrogyne. Here, we investigated the genetic divergence of the host and the parasite queen morphs in 11 localities in southern Finland, using nuclear and mitochondrial markers of queens and workers. We formulated and tested four speciation‐related hypotheses that differed in the degree of genetic divergence between the morphs. The queen morphs were genetically distinct from each other with little hybridization. In the nuclear data, when localities were nested within queen morphs in the hierarchical amova , 39% of the genetic variation was explained by the queen morph (standardized F'CT = 0.63, uncorrected FCT = 0.39), whereas 18% was explained by the locality (F'SC = 0.39, FSC = 0.29). This result corroborated the hypothesis of advanced sympatric speciation. In contrast, the mitochondrial DNA could not settle between the hierarchical levels of locality and queen morph, thus substantiating equally the hypotheses of incipient and advanced sympatric speciation. Together, our results support the view that the microgynous parasite has genetically diverged from its macrogynous host to the level of a nascent species.  相似文献   

18.
Genetic polymorphisms are powerful model systems to study the maintenance of diversity in nature. In some systems, polymorphisms are limited to female coloration; these are thought to have arisen as a consequence of reducing male mating harassment, commonly resulting in negative frequency‐dependent selection on female color morphs. One example is the damselfly Ischnura elegans, which shows three female color morphs and strong sexual conflict over mating rates. Here, we present research integrating male tactics, and female evolutionary strategies (female mating behavior and morph‐specific female fecundity) in populations with different morph‐specific mating frequencies, to obtain an understanding of mating rates in nature that goes beyond the mere measure of color frequencies. We found that female morph behavior differed significantly among but not within morphs (i.e., female morph behavior was fixed). In contrast, male tactics were strongly affected by the female morph frequency in the population. Laboratory work comparing morph‐specific female fecundity revealed that androchrome females have lower fecundity than both of the gynochrome female morphs in the short term (3‐days), but over a 10‐day period one of the gynochrome female morphs became more fecund than either of the other morphs. In summary, our study found sex‐specific dynamics in response to different morph frequencies and also highlights the importance of studying morph‐specific fecundities across different time frames to gain a better understanding of the role of alternative reproductive strategies in the maintenance of female‐limited color polymorphism.  相似文献   

19.
We studied habitat choice, diet, food consumption and somatic growth of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) during the ice-covered winter period of a subarctic lake in northern Norway. Both Arctic charr and brown trout predominantly used the littoral zone during winter time. Despite very cold winter conditions (water temperature <1°C) and poor light conditions, both fish species fed continuously during the ice-covered period, although at a much lower rate than during the summer season. No somatic growth could be detected during the ice-covered winter period and the condition factor of both species significantly declined, suggesting that the winter feeding rates were similar to or below the maintenance requirements. Also, the species richness and diversity of ingested prey largely decreased from summer to winter for both fish species. The winter diet of Arctic charr <20 cm was dominated by benthic insect larvae, chironomids in particular, and Gammarus lacustris, but zooplankton was also important in December. G. lacustris was the dominant prey of charr >20 cm. The winter diet of brown trout <20 cm was dominated by insect larvae, whereas large-sized trout mainly was piscivorous, feeding on juvenile Arctic charr. Piscivorous feeding behaviour of trout was in contrast rarely seen during the summer months when their encounter with potential fish prey was rare as the small-sized charr mainly inhabited the profundal. The study demonstrated large differences in the ecology and interactions of Arctic charr and brown trout between the winter and summer seasons.  相似文献   

20.
Minimally invasive, non‐lethal methods of ultrasonography were used to assess sex, egg diameter, fecundity, gonad volume, and gonadosomatic index, as well as endoscopy to visually assess the reproductive stage of Scaphirhynchus albus. Estimated mean egg diameters of 2.202 ± 0.187 mm and mean fecundity of 44 531 ± 23 940 eggs were similar to previous studies using invasive techniques. Mean S. albus gonadosomatic indices (GSI) for reproductive and non‐reproductive females were 16.16 and 1.26%, respectively, while reproductive and non‐reproductive male GSI were 2.00 and 0.43%, respectively. There was no relationship between hybrid status or capture location and GSI. Mean fecundity was 48.5% higher than hatchery spawn estimates. Fecundity increased as fork length increased but did so more dramatically in the upper river kilometers of the Missouri River. By examining multiple fish over multiple years, the reproductive cycle periodicity for hatchery female S. albus was found to be 2–4 years and river dwelling males 1–4 years. The use of ultrasonic and endoscopic methods in combination was shown to be helpful in tracking individual gonad characteristics over multi‐year reproductive cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号