首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of alpha-rat calcitonin gene-related peptide (alpha-rCGRP) on systemic and renal hemodynamics and on renal electrolyte excretion were examined in normal anesthetized rats. In one group of rats (n = 7), infusions of alpha-rCGRP at doses of 10, 50, 100, and 500 ng/kg/min for 15 min each produced dose-related and significant decreases in mean arterial pressure from a control of 130 +/- 3 mm Hg to a maximal depressor response of 91 +/- 2 mm Hg. During the first three doses of alpha-rCGRP, renal blood flow progressively and significantly increased from a control of 5.0 +/- 0.3 ml/min to a peak level of 6.3 +/- 0.3 ml/min achieved during the 100 ng/kg/min infusion. With the highest infusion rate of 500 ng/kg/min, renal blood flow fell below the control level to 4.5 +/- 0.2 ml/min (P less than 0.05). The responses in renal blood flow and mean arterial pressure were associated with reductions in renal vascular resistance. After cessation of alpha-rCGRP infusions, arterial pressure, renal blood flow, and renal vascular resistance gradually returned toward the baseline values. In another group of rats (n = 9), infusion of alpha-rCGRP for 30 min at 100 ng/kg/min produced a significant reduction in urinary sodium excretion from 0.28 +/- 0.06 to 0.14 +/- 0.5 muEq/min (P less than 0.05). Urine flow and urinary potassium excretion also appeared to decrease, but the changes were not significantly different (P greater than 0.05) from their respective baselines. These results demonstrate that alpha-rCGRP is a potent and reversible hypotensive and renal vasodilatory agent in the anesthetized rat. The data also suggest that alpha-rCGRP may have significant effects on the excretory function of the kidney.  相似文献   

2.
Angiotensin (ANG) II effects may be partly mediated by endothelin (ET)-1. This study analyses the hemodynamic, renal, and hormonal responses of acute ET(A) receptor antagonism (LU-135252) at two ANG II plasma levels in eight conscious dogs. Protocol 1 involved a 60-min baseline, followed by two doses of ANG II for 60 min each (4 and 20 ng. kg(-1). min(-1)), termed ANG II 4 (slightly increased) and ANG II 20 (pathophysiologically increased ANG II plasma concentration). Protocol 2 was the same as protocol 1 but included 15 mg/kg iv LU-135252 after the baseline period. Protocol 3 was a 3-h time control. ANG II without LU-135252 did not increase plasma big ET-1 and ET-1, whereas LU-135252 increased ET-1 transiently after injection. This transient ET-1 increase was not reflected in urinary ET-1 excretion. The ANG II induced decreases in sodium, water, and potassium excretion, glomerular filtration rate, and fractional sodium excretion were not different with and without LU-135252. Mean arterial pressure increased during ANG II and was not lower with LU-135252 (-6 mmHg, not significant). Most importantly, during ANG II 20 LU-135252 prevented the decrease in cardiac output. Simultaneously, systemic vascular resistance increased 40% less, pulmonary vascular resistance was maintained at baseline levels, and central venous and wedge pressure were lower. Because ANG II stimulated endothelin de novo synthesis should just have started after 2 h of ANG II infusion, there must be mechanisms other than blocking the coupling of de novo synthesized endothelins to the ET(A) receptors to explain the effects of acute ET(A) receptor inhibition in our setting.  相似文献   

3.
The present experiments were carried out to determine the role of nitric oxide in influencing systemic and renal hemodynamics in conscious young sheep. Parameters of cardiovascular function were measured before and for 4 h after intravenous injection of either L-NAME (NG-nitro-L-arginine methyl ester) or D-NAME (N(G)-nitro-D-arginine methyl ester) at doses of 10, 20, or 40 mg/kg in 13 conscious, chronically instrumented young sheep aged 43 +/-5 days. Blood pressure increased and heart rate decreased in a dose-dependent manner following administration of L-NAME. Renal vascular resistance was increased for 10 min following a dose of 10 mg/kg of L-NAME and for 120 min following a dose of 40 mg/kg of L-NAME. The renal vasodilatory response to close arterial injection of 1 microg/kg of acetylcholine was attenuated by L-NAME in a dose-dependent manner. These experiments provide the first information that under normal physiological conditions in conscious young animals, nitric oxide influences systemic and renal hemodynamics.  相似文献   

4.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

5.
The renal effects of dopexamine, a new dopaminergic agonist with marked beta 2-adrenergic agonist properties, but no alpha-adrenergic effect, has been studied in 8 newborn New Zealand rabbits, whose renal functional characteristics show close similarities with those of premature infants. Six animals were used as controls. After a control period, dopexamine was infused intravenously at a rate of 4 micrograms/kg per min and after a wash-out period, at 10 micrograms/kg per min. The renal effects of dopamine were studied in similar conditions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were determined by inulin and para-aminohippuric acid clearances, respectively. Dopexamine, 4 micrograms/kg per min, did not induce changes in cardiovascular and renal hemodynamics or in renal functions. At 10 micrograms/kg per min, a significant increase in urine flow rate (25 +/- 5%; p less than 0.01), urine sodium excretion (77 +/- 17%; p less than 0.01) and fractional sodium excretion (69 +/- 25%; p less than 0.05) was observed. The GFR, RPF and renal vascular resistance (RVR) were not affected. Heart rate increased slightly but significantly (8 +/- 3%; p less than 0.05), without change in mean blood pressure (MBP). Dopamine, 4 micrograms/kg per min, decreased slightly albeit significantly MBP (3 +/- 1%; p less than 0.05). At 10 micrograms/kg per min the only renal effect was a significant increase in RVR (19 +/- 6%; p less than 0.02). The different actions of these two dopaminergic agonists in this immature model could be explained by their respective ability to activate electively the adrenergic and dopaminergic peripheral receptors. The natriuretic and diuretic effect of dopexamine in normal immature rabbits, in the absence of changes in RPF or GFR is probably mediated by a direct action of this agent on dopaminergic tubular receptors. Failure of these two drugs to increase RPF may be related to an immaturity of the dopaminergic vascular receptors.  相似文献   

6.
R K Handa  V M Buckalew 《Life sciences》1992,51(20):1571-1575
The effect of myristoyl-lysophosphatidylcholine (myristoyl-LPC) on renal hemodynamics, electrolyte and water excretion was examined over a 90 min period in sodium pentobarbital anesthetized male Sprague Dawley rats. Intravenous infusion of myristoyl-LPC at 13 +/- 3 pmol/min resulted in a small fall in systemic blood pressure, a 13% decrease in renal plasma flow without significantly altering glomerular filtration rate and produced a slightly greater excretion of sodium and water than vehicle controls. These results suggest that short term myristoyl-LPC administration can significantly alter renal function producing a weak natriuresis and diuresis which is not dependent on systemic blood pressure and renal hemodynamic changes.  相似文献   

7.
This study evaluated the effects of synthetic atrial natriuretic factor (ANF) on renal hemodynamics, urinary excretion of electrolytes, norepinephrine (NE), and dopamine (DA); and renal production of renin in anesthetized dogs. Following a bolus (1 micrograms/kg body weight) and infusion (0.1 microgram/kg/min) for 30 min, there was significant increase in urine flow (220 +/- 41%), glomerular filtration rate (72 +/- 14%), and urinary sodium excretion (170 +/- 34%). There was a decrease in renin secretory rate and the concentration ratio of urine NE to DA following ANF was decreased (p less than 0.05). These data suggest that ANF decreases renal production of NE and renin.  相似文献   

8.
Cyclosporine A (CyA) nephrotoxicity is associated with impaired renal hemodynamic function and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction can be partially reversed by inhibitors of thromboxane synthase. However, interpretation of these results is complicated since inhibition of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specifically examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) (2.85 +/- 0.26 [CyA] vs 6.82 +/- 0.96 ml/min/kg [vehicle]; p less than 0.0005) and renal blood flow (RBF) (21.65 +/- 2.31 [CyA] vs 31.87 +/- 3.60 ml/min/kg [vehicle]; p less than 0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32 +/- 0.55 [CyA] vs. 3.54 +/- 0.24 mm Hg/min/ml/kg [vehicle]; p less than 0.05). These renal hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, "native" thromboxane B2 (TxB2) (103 +/- 18 [CyA] vs 60 +/- 16 pg/hour [vehicle]; p less than 0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells expressing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significantly increased GFR and RBF, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA.  相似文献   

9.
We evaluated the effects of volume expansion with saline (0.5 ml kg-1 min-1, n = 13) and with 10% mannitol in saline (0.5 ml kg-1 min-1, n = 13) on the cardiorenal actions of endothelin-1 (ET) in rats anesthetized with sodium pentobarbital. We also evaluated to what extent the calcium channel antagonist, verapamil (0.02 mg kg-1 min-1), altered the cardiorenal actions of endothelin in volume-expanded rats (n = 10 with saline and n = 10 with mannitol). In five rats from each group, renal blood flow was measured with an electromagnetic flow probe. Sixty minutes after surgery, control clearances were collected, ET (110 ng kg-1 min-1) was then infused for 30 min, and recovery clearances were collected for 60 min. ET caused a similar increase in mean arterial blood pressure and decrease in renal blood flow and the glomerular filtration rate in the saline and mannitol groups. Verapamil significantly attenuated but did not abolish the ET-induced increase in mean arterial blood pressure in both saline- and mannitol-treated rats. By contrast, the calcium channel antagonist had no effect on the ET-induced decrease in either the glomerular filtration rate or renal blood flow in saline-treated rats, but significantly attenuated these responses to ET in mannitol-expanded animals. These data demonstrate that (i) the systemic and renal responses to ET are not affected by expansion with saline or mannitol and (ii) the renal vasoconstriction prompted by endothelin is not affected by verapamil in saline-expanded rats, but is attenuated by the Ca2+ channel antagonist during expansion with mannitol. These data suggest that during volume expansion with mannitol, but not with saline, the ET-induced renal vasoconstriction occurs primarily at intrarenal resistance sites that are dependent upon extracellular Ca2+.  相似文献   

10.
The effect of varying doses of captopril, an angiotensin I-converting enzyme inhibitor, on renal hemodynamics, systemic arterial pressure, and the progression of chronic renal disease in conscious, three-quarter nephrectomized adult male Sprague-Dawley rats was studied. Six weeks following nephrectomy (Week 0), rats were randomly divided into five groups. Group 2 (n = 8), 3 (n = 8), 4 (n = 9), and 5 (n = 5) were given 5, 10, 20, and 40 mg/kg captopril, respectively, daily in drinking water. Group 1 (n = 7) and sham-operated controls (n = 7) were given water only. On Weeks -6, 0, 2, and 4, renal function was assessed by 24-hr urinary protein excretion and plasma creatinine. Systolic blood pressure was measured at these times by the tail cuff method. Following Week 4, glomerular filtration rate and effective renal plasma flow were measured in conscious rats by single injection clearance of [3H]inulin and [14C]tetraethylammonium bromide, respectively. Group 1 had significantly higher (P less than 0.05) 24-h urinary protein excretion, plasma creatinine, and systolic pressure compared with Group 5 and controls by Week 4, whereas values for these parameters for Groups 2-4 ranged between these extremes. Although systolic pressures were not significantly different (P greater than 0.05), Group 2 had significantly lower proteinuria than Group 1 (P less than 0.05) at Week 4. Total kidney glomerular filtration rate was similarly decreased in Groups 1-5 compared with control rats. Total kidney effective renal plasma flow was higher in captopril-treated groups than in Group 1, whereas systolic blood pressure was similar or lower, indicating that captopril reduced renal vascular resistance. Furthermore, unlike Groups 1-3, the groups receiving higher doses of captopril (4 and 5) did not develop anemia associated with chronic renal disease. In conclusion, captopril attenuated renal functional deterioration in a dose-related manner. The effect on proteinuria was evident at low doses of captopril which did not significantly reduce systemic blood pressure and was accompanied by an increase in effective renal plasma flow and a decrease in renal vascular resistance.  相似文献   

11.
Pulmonary vascular response to endothelin in rats   总被引:3,自引:0,他引:3  
This study investigated the pulmonary vascular response to endothelin (ET) in rats. In conscious rats, an incremental intravenous bolus of ET-1 (100-1,000 pM) caused, after an initial drop in systemic arterial pressure (Psa), a secondary dose-dependent increase of Psa concomitant with a decrease of cardiac output (CO) and heart rate (HR). Pulmonary arterial pressure (Ppa) remained unchanged, and pulmonary vascular resistance (PVR) increased significantly only after 1,000 pM (+ 40.0 +/- 10.4 at 15 min). Meclofenamate (6 mg/kg iv) did not alter hemodynamic response to ET (300 pM). After autonomic blockade with hexamethonium (6 mg/kg iv) plus atropine (0.75 mg/kg iv), bradycardia response to ET (300 pM) was blocked, but CO decreased, systemic vascular resistance increased, and PVR remained unchanged as in controls. In anesthetized ventilated rats, bolus injections of ET (10-1,000 pM) induced a transient dose-related decrease in compliance (-10.9 +/- 1.8% after 1,000 pM) but no change of conductance. In isolated lungs, Ppa increased at doses greater than 100 pM, and edema developed in response to 1,000 pM ET. The rise of Ppa in response to 300 pM was not altered by meclofenamate (3.2 x 10(-6) M) but was potentiated by inhibitors of endothelium-derived relaxing factor(s) (EDRF), methylene blue (10(-4) M), pyrogallol (3 x 10(-5) M), and NG-monomethyl-L-arginine (6 x 10(-4) M) (3.9 +/- 0.3, 4.6 +/- 0.5, and 5.9 +/- 0.3 mmHg, respectively, compared with 1.5 +/- 0.5 mmHg in control lungs). These results suggest that circulating ET is a more potent constrictor of the systemic circulation than of the pulmonary vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Intrarenal arterial (i.a.) infusions of prostacyclin (PGI2) at 30-300 ng/min to anaesthetized dogs reduced renal vascular resistance (RVR) and filtration fraction (FF), increased mean renal blood flow (MRBF) but did not alter mean arterial pressure (MAP)or glomerular filtration rate (GFR). The urinary excretion of sodium (UNaV), potassium (UKV) and chloride ions (UC1V) were increased through inhibition of net tubular ion reabsorption. PGI2 (3000 ng/min, i.a.) reduced MAP and increased heart rate. Intravenous (i.v.) infusions of PGI2 (3000 gn/min) reduced MAP, GFR, FF, urine volume and ion excretion, with elevation of heart rate. The measured variables were unaltered by 6-oxo-PGF1 alpha (10,000 ng/min i.a.). Treatment of the dogs with the PG synthetase inhibitor meclofenamic acid (2.5 mg/kg i.v.) did not antagonise the elevation of MRBF to PGI2 (300 ng/min i.a.). Thus the renal effects of PGI2 were due to a direct action rather than through conversion to 6-oxo-PGF1 alpha or through stimulation of endogenous renal PG biosynthesis and release.  相似文献   

13.
Previous studies have shown that administration of captopril to sodium-depleted rats decreases the glomerular filtration rate (GFR) and blunts the increase in glomerular prostacyclin synthesis normally occurring in response to sodium depletion. To clarify the relationship between these two responses, iloprost, a stable analogue of prostacyclin, was administered to Na-depleted, captopril-treated (LNC) rats. At a dosage not affecting systemic blood pressure (12.5 ng/kg/min), iloprost increased GFR in LNC rats by 25% (from 0.26 +/- 0.03 to 0.35 +/- 0.03 ml/min/100 g body wt, P less than 0.01), without significant effects on renal plasma flow. No effect was observed in control rats. The results suggest that altered prostacyclin synthesis could contribute to the decrease of GFR in this model.  相似文献   

14.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Experiments were performed on 19 anaesthetized open-chest dog instrumented with polyethylene catheters inserted: into the aorta, in pulmonary artery and in left atrium and with an electromagnetic flow-transducer placed around the ascending aorta in order to record : systemic arterial and pulmonary pressures, mean left auricular pressure and phasic aortic flow. Heart rate, stroke volume, total systemic and pulmonary resistance, cardiac work were moreover calculated. Each dog was given intravenously by slow infusione : Dopamine (micrograms 5--10--20/kg/min/ 5 min), Isoproterenol (microgram 0.125--0.25--0.5/kg/min/5 min) and Norepinephrine (microgram 0.25--0.5--1 /kg/min/5 min). Results obtained on systemic hemodynamics agree with those reported by many other investigators. On pulmonary circulation : Isoproterenol, at the tested doses, elicited vasodilator effects, Norepinephrine increased total pulmonary resistance but not pulmonary vascular resistance, while Dopamine did not modify or slightly reduced vascular pulmonary tone.  相似文献   

16.
The effect of prostaglandin I2 (prostacyclin) on renal and intrarenal hemodynamics and function was studied in mongrel dogs to elucidate the role of this novel prostaglandin in renal physiology. Starting at a dose of 10(-8) g/kg/min, PGI2 decreased renal vascular resistance and redistributed the blood flow away from the outer cortex (zone 1) and towards the juxtamedullary cortex (zone 4). At 3 X 10(-8) g/kg/min, the renal vascular resistance decreased even further, but at this dose the mean arterial blood pressure also declined 13% indicating recirculation of this prostaglandin. PGI2 infusion at a vasodilatory dose resulted in natriuresis and kaliuresis. With a decline in filtration fraction, these changes were most likely secondary to the hemodynamic effects of this prostaglandin. Unlike PGE2, PGI2 had no direct effect on free water clearance indicating lack of activity at the collecting duct. PGI2 may be the important renal prostaglandin involved in modulating renal vascular resistance and intrarenal hemodynamics as well as influencing systemic blood pressure.  相似文献   

17.
The effect of prostaglandin I2 (prostacyclin) on renal and intrarenal hemodynamics and function was studied in mongrel dogs to elucidate the role of this novel prostaglandin in renal physiology. Starting at a dose of 10?8 g/kg/min, PGI2 decreased renal vascular resistance and redistributed the blood flow away from the outer cortex (zone 1) and towards the juxtamedullary cortex (zone 4). At 3 × 10?8 g/kg/min, the renal vascular resistance decreased even further, but at this dose the mean arterial blood pressure also declined 13% indicating recirculation of this prostaglandin. PGI2 infusion at a vasodilatory dose resulted in natriuresis and kaliuresis. With a decline in filtration fraction, these changes were most likely secondary to the hemodynamic effects of this prostaglandin. Unlike PGE2, PGI2 had no direct effect on free water clearance indicating lack of activity at the collecting duct. PGI2 may be the important renal prostaglandin involved in modulating renal vascular resistance and intrarenal hemodynamics as well as influencing systemic blood pressure.  相似文献   

18.
Pressor doses of norepinephrine (NE) (n = 8) and angiotensin II (A II) (n = 5) were infused in normal volunteers to determine whether the systemic administration of vasopressor hormones influence renal eicosanoid production and whether, in turn, the eicosanoids produced could modulate renal hemodynamics and electrolyte excretion. At the doses administered, both pressor substances induced the expected rise in blood pressure, a significant decrease (P less than 0.05) in renal blood flow and a proportionally smaller fall in glomerular filtration rate, resulting in a consistent augmentation in filtration fraction. Fractional sodium excretion was concomitantly reduced. NE infusion produced only slight modifications in urinary prostaglandin (PG)E2, 2,3-dinor-6-keto-PGF1 alpha and thromboxane (TX)B2, while urinary 6-keto-PGF1 alpha and PGF2 alpha were increased by 38% and 176% respectively. The increase in urinary 6-keto-PGF1 alpha (the non-enzymatic degradation product of PGI2, predominantly of cortical origin) was proportional to the level of circulating NE (r = 0.78, P less than 0.05) and to the renal vascular resistance (r = 0.85, P less than 0.01), suggesting an immediate compensatory role for PGI2 in response to the NE-induced pressor stimulus. The renal production of PGE2 and PGF2 alpha (predominantly medullary) was inversely correlated with the filtration fraction: the greater the increase in PGE2 and PGF2 alpha the lower the elevation in filtration fraction or the decline in renal blood flow upon NE administration. All infusion variably stimulated the renal eicosanoid production: PGE2, 41%; PGF2 alpha, 102%; 6-keto-PGF1 alpha, 38%; 2,3-dinor-6-keto-PGF1 alpha, 38%; and TXB2, 25%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mongrel dogs prepared with chronic catheters in their femoral artery and vein and urinary bladder received 60 minute infusions of atrial peptide ranging from 5 to 100 ng/kg/min. Infusion of atrial peptides caused dose dependent increases in plasma atrial peptide concentration with doses of 25 ng/kg/min or less increasing plasma concentrations to levels observed in normal animals during stimulation of endogenous atrial peptide secretion. Atrial peptide infusion at doses of 10 ng/kg/min and above caused significant decreases in mean arterial pressure which were not accompanied by statistically significant changes in heart rate. Atrial peptide infusion at doses of 25 ng/kg/min and above increased urinary sodium excretion and urine flow rate. Atrial peptide infusion was without effect on plasma vasopressin, ACTH and corticosterone concentrations. However, atrial peptide infusion resulted in dose dependent decreases in plasma aldosterone concentration and plasma renin activity, but the decreases were only significant with the high physiologic (25 ng/kg/min) and pharmacologic doses (50 & 100 ng/kg/min). These data show that atrial peptide infusions in conscious dogs have minimal effects when infused in small doses that mimic endogenous atrial peptide release. At higher doses, significant effects on the cardiovascular, renal and endocrine systems can be observed but their physiological significance is unclear.  相似文献   

20.
The objective of this study was to evaluate the renal actions of atrial natriuretic peptide (ANP) in the unilateral postischemic kidney of anesthetized dogs with a severe reduction in glomerular filtration rate. The dose of atrial natriuretic peptide (50 ng.kg-1.min-1) we gave did not alter the mean systemic arterial pressure, renal blood flow, and glomerular filtration rate in the normal kidney, as determined in foregoing studies. ANP was infused into the intrarenal artery continuously for 60 min after the release from 45 min of complete renal artery occlusion. In the vehicle-infused group, the glomerular filtration rate fell dramatically (6% of control), the renal blood flow decreased (60% of control), and the mean systemic arterial pressure tended to increase (136% of control). The urine flow rate and urinary excretion of sodium decreased significantly (25 and 25%, respectively) at 30 min after reflow in the postischemic period. Continuous renal artery infusion of ANP resulted in a marked increase in urine flow rate (246% of control) and the urinary excretion of sodium (286% of control). The administration of ANP led to an improvement in renal blood flow (99% of control) and glomerular filtration rate (40% of control), and attenuated the rise in mean systemic arterial pressure (109% of control), compared with findings in the vehicle-infused group. Plasma renin activity and prostaglandin E2 concentration in the renal venous blood were elevated after the release from complete renal artery occlusion in both groups. These results indicate that the vascular effects of ANP on the postischemic kidney were enhanced and that the peptide maintained the natriuretic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号