首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In soybean (Glycine max (L.) Merr.), a chromosomal region defined by 3 closely linked loci, k2 (tan-saddle seed coat), Mdh1-n (malate dehydrogenase 1 null), and y20 (yellow foliage), is highly mutable. A total of 31 mutants have been reported from this region. In this study, a mutation with tan-saddle seed coat was found from bulk-harvested seed of cultivar Kenwood. Genetic analysis established that this tan-saddle seed coat mutation is allelic to the k2 locus and inherited as a recessive gene. Simple sequence repeat analysis showed that this mutant is not a contaminant from other existing k2 mutants. The mutant was named Kenwood-k2. To test for genetic instability at the k2 Mdh1-n y20 chromosomal region, Kenwood-k2 was crossed reciprocally with cultivars Harosoy and Williams. No new mutants were found in F2 families. In the genetic instability tests of T239 (k2) with cultivar Williams, 3 new mutants with yellow foliage (y20) and malate dehydrogenase 1 null (Mdh1-n) were identified. In the genetic instability tests of T261 (k2 Mdh1-n) with cultivar Williams, no new mutants were found. The Kenwood-k2 and the 3 yellow-foliage, malate dehydrogenase 1-null mutants provide additional genetic materials to study chromosomal aberrations in this mutable/unstable chromosomal region.  相似文献   

2.
The transition to flowering is a crucial moment in a plant's life cycle of which the mechanism has only been partly revealed. In a screen for early flowering, after mutagenesis of the late-flowering fwa mutant of Arabidopsis thaliana, the early flowering in short days (efs) mutant was identified. Under long-day light conditions, the recessive monogenic efs mutant flowers at the same time as wild type but, under short-day conditions, the mutant flowers much earlier. In addition to its early-flowering phenotype, efs has several pleiotropic effects such as a reduction in plant size, fertility and apical dominance. Double mutant analysis with several late-flowering mutants from the autonomous promotion (fca and fve) and the photoperiod promotion (co, fwa and gi) pathways of flowering showed that efs reduces the flowering time of all these mutants. However, efs is completely epistatic to fca and fve but additive to co, fwa and gi, indicating that EFS is an inhibitor of flowering specifically involved in the autonomous promotion pathway. A vernalisation treatment does not further reduce the flowering time of the efs mutant, suggesting that vernalisation promotes flowering through EFS. By comparing the length of the juvenile and adult phases of vegetative growth for wild-type, efs and the double mutant plants, it is apparent that efs mainly reduces the length of the adult phase.  相似文献   

3.
The gigas mutant in pea is deficient in the floral stimulus   总被引:3,自引:0,他引:3  
Identification of a gene acting in the floral stimulus pathway should provide a basis for determining the identity of this elusive substance. Our tests indicate the Gi (gigas) gene in pea (Pisum sativum L.) acts in this manner. The gigas mutant was selected by Dl M. Vassiteva following gamma radiation of the late flowering, quantitative long day cultivar Virtus. The gigas trait showed single gene recessive inheritance and the mutant allele was symbolised gi consistent with our preliminary report. Gigas plants were later flowering than the initial line in all conditions tested and they showed an enhanced response to photoperiod and vernalisation. Unvernalised gigas plants did not flower under a 24-h photoperiod comprising 8 h of daylight and 16 h of weak (3μmol m?2 s?1) incandescent light and they took on a phenotype similar to the vegl (vegetative) mutant in pea. However, genetic tests showed the two mutants were not allelic. Three or four weeks vernalisation at 4?C resulted in 100% flowering of gigas plants under the 24-h photoperiod. Applied gibberellin A3 inhibited flowering in gigas plants given partial cold induction. Grafting studies showed the promotive effect of vernalisation occurred in the shoot. Grafting studies were also used to examine the physiological basis of delayed flowering in the gigas mutant. These studies indicated that gigas plants produced normal levels of flower inhibitor and they responded in a normal manner to the floral stimulus, Reciprocal grafts were made between the gigas mutant and the wild-type initial line. Under the 24-h photoperiod, either a wild-type root-stock with cotyledons or a wild-type shoot induced flowering in a gigas graft partner. However, under a 9-h photoperiod, flowering was only induced if the wild-type partner possessed both roots and a shoot. We conclude that gigas plants are deficient in the floral stimulus or a precursor which can be supplied across a graft union by a wild-type donor. Of the 12 major flowering genes known in pea, Gi is the first found to act on the synthesis pathway for the floral stimulus.  相似文献   

4.
Pressure is expected to be an important parameter to affect characteristics of matters and control rate and equilibrium of chemical reactions. As a fundamental thermodynamic variable, it also has effects on bio-macromolecules and a lot of physiological an…  相似文献   

5.
6.
Tomatoes of the Micro-Tom cultivar, Solanum lycopersicum L. (Solanaceae), are small, have a short life cycle, high-density growth, high-efficiency protocols for genetic transformation, and hormonal and morphological mutants. These characteristics make this cultivar a good candidate as a helpful tool in resistance studies against the whitefly, Bemisia tabaci (Gennadius 1889) (Hemiptera: Aleyrodidae). The insect behavior in the Micro-Tom cultivar was observed through free-choice and no-choice oviposition preference tests and life cycle in lab conditions, having as reference the Santa Clara cultivar. In these tests, behavioral and biological insect parameters were obtained and the purpose was used to assess the trichome absence effect on oviposition with the hairless mutant. In the studies for oviposition preference, no difference was observed among the three material obtained. A nymphal stage prolongation and a low nymph viability with an adult longevity reduction were observed in relation to the Santa Clara in the Micro-Tom cultivar and hairless mutant. The Micro-Tom cultivar and hairless mutant do not present antixenotic effects to the oviposition. Mutation present in the hairless mutant does not alter the results observed in the ‘Micro-Tom.’ In general, the absence of the trichome did not reduce the Micro-Tom susceptibility to the oviposition. Antibiosis was observed in the Micro-Tom and it was discussed considering its association with salicylic and jasmonic acids, and brassinosteroid levels. These results show that this cultivar is a pest host and suitable for greenhouse and lab tests, in addition to being able to be used as a susceptibility standard for antixenosis.  相似文献   

7.
Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthin; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production by mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29–30% lower than in the control plants; in their hybrids, however, it is 1.5–2 times higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus.  相似文献   

8.
By using high-pressure treatment, two mutant lines were obtained from a genetically stable japonica rice cultivar Bijing38. Genomic DNA of the mutant lines, together with the original line (Bijing38), was either undigested or digested by Hpa II/Msp I, and then subjected to molecular analysis using two markers, ISSR and RAPD. Results indicated that changes in the PCR amplification profiles of both markers are apparent in the two mutant lines compared with the original rice cultivar, suggesting that there had been both sequence changes and DNA methylation modifications in the mutant lines. Southern blot analysis using diverse sequences, including two cellular genes (S2 and S3), a set of retrotransposons (Osr7, Osr36, Tos19 and more), and a MITE transposon family (mPing and Pong), confirmed the results, and indicated that changes in DNA methylation pattern, genomic structure, and possible activation of some transposons indeed occurred in the mutant lines. Moreover, these changes are stably maintained through selfed generations and in different organs. Thus, our results indicate that it is possible to obtain stable mutants in rice by high pressure treatments, and the molecular basis of the mutants may include both genetic and epigenetic changes. Therefore, high hydrostatic pressure seems a promising approach for plant mutagenesis.  相似文献   

9.
Five scotochromogenic mutants and 11 achromogenic mutants were induced by UV irradiation of the non-acid-fast photochromogenic PN strain ofMycobacterium phlei. Spontaneous scotochromogenic and achromogenic mutants were not obtained. Colonies of the scotochromogenic mutants are orange, except for one mutant which is ochre. Three mutants are resistant to STM. Out of 11 achromogenic mutants 3 were induced by UV treatment of the original photochromogenic strain, 8 were prepared from the scotochromogenic mutant. No significant differences in the sensitivity to UV rays were found among the scotochromogenic mutant, achromogenic mutant and the photochromogenic PN strain ofMycobacterium phlei under the given experimental conditions. Scotochromogenic mutants and most achromogenic mutants are stable and suitable for further genetic investigation. Pigmentation changes can be used as genetic marker in mutation studies.  相似文献   

10.
Genome sequencing reveals agronomically important loci in rice using MutMap   总被引:11,自引:0,他引:11  
The majority of agronomic traits are controlled by multiple genes that cause minor phenotypic effects, making the identification of these genes difficult. Here we introduce MutMap, a method based on whole-genome resequencing of pooled DNA from a segregating population of plants that show a useful phenotype. In MutMap, a mutant is crossed directly to the original wild-type line and then selfed, allowing unequivocal segregation in second filial generation (F(2)) progeny of subtle phenotypic differences. This approach is particularly amenable to crop species because it minimizes the number of genetic crosses (n = 1 or 0) and mutant F(2) progeny that are required. We applied MutMap to seven mutants of a Japanese elite rice cultivar and identified the unique genomic positions most probable to harbor mutations causing pale green leaves and semidwarfism, an agronomically relevant trait. These results show that MutMap can accelerate the genetic improvement of rice and other crop plants.  相似文献   

11.
12.
Random amplified polymorphic DNA (RAPD) analysis was used tostudy variation among and within selectedIxora (Rubiaceae) populationsand mutants. Six populations of I. congesta yielded identicalbanding patterns suggesting genetic uniformity of this species.However, six populations of I. coccinea varieties (three red-flowered,two yellow-flowered and one red-flowered wild-type) exhibitedinfraspecific differences in RAPD profiles. Small and largeleaves of an atavistic mutant cultivar of I. coccinea were alsosubjected to RAPD analysis. An extra band was amplified in thelarge leaves that was absent in small leaves, suggesting thatthe phenotypic alteration in this taxon is due to genetic mutationrather than epigenetic changes. Similarly, an extra band wasdetected in the white sectors of I. Variegated compared to thegreen sectors, suggesting that the shoot apical meristems ofthis cultivar exist as a genetic chimera. DNA gel blot hybridizationwas performed to confirm the specificities of selected bands.Our study indicates that differences among individuals of variouspopulations and mutants may be detected using RAPD markers.Copyright 1999 Annals of Botany Company Ixora L., variegated variety, RAPD fingerprinting, DNA gel blot, intraspecific genetic similarity, atavistic mutant.  相似文献   

13.
The availability of soybean mutants with altered symbiotic properties allowed an investigation of the shoot or root control of the relevant phenotype. By means of grafts between these mutants and wild-type plants (cultivar Bragg and Williams), we demonstrated that supernodulation as well as hypernodulation (nitrate tolerance in nodulation and lack of autoregulation) is shoot controlled in two mutants (nts382 and nts1116) belonging most likely to two separate complementation groups. The supernodulation phenotype was expressed on roots of the parent cultivar Bragg as well as the roots of cultivar Williams. Likewise it was shown that non-nodulation (resistance to Bradyrhizobium) is root controlled in mutant nod49. The shoot control of nodule initiation is epistatically suppressed by the non-nodulation, root-expressed mutation. These findings suggest that different plant organs can influence the expression of the nodulation phenotype.  相似文献   

14.
Abrupt temperature reduction in winter wheat at either autumn seedling stage prior to vernalisation or early spring crown stage can cause severe crop damage and reduce production. Many studies have reported the physiological and molecular mechanisms underlying cold acclimation in winter wheat by comparing it with spring wheat. However, processes associated with abrupt temperature reduction in autumn seedling stage prior to vernalisation in winter wheat are less understood. In this study, physiological and molecular responses of winter wheat seedlings to abrupt low temperature (LT) stress were characterised in the relatively LT‐tolerant winter wheat cultivar Shixin 828 by comparing it with the relatively LT‐sensitive cultivar Shiluan 02‐1 using a combination of physiological, proteomics and biochemical approaches. Shixin 828 was tolerant to abrupt LT stress, while Shiluan 02‐1 exhibited high levels of reactive oxygen species (ROS) and leaf cell death. Significant increases in relative abundance of antioxidant‐related proteins were found in Shixin 828 leaves, which correlate with observed higher antioxidant enzyme activity in Shixin 828 compared to Shiluan 02‐1. Proteomics analysis also indicated that carbohydrate metabolism‐related proteins were more abundant in Shiluan 02‐1, correlating with observed accumulation of soluble sugars in Shiluan 02‐1 leaves. Amino acid analysis revealed a strong response to LT stress in wheat leaves. A negative effect of exogenous sucrose on LT tolerance was also found. This study indicates that high ROS scavenging capacity and high abundance of photosynthesis‐related proteins might play a role in winter wheat response to abrupt LT stress. In contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02‐1.  相似文献   

15.
Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar ‘Indian’. Released in early 1900s, ‘Indian’ is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, ‘gritty’ coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.  相似文献   

16.
A natural male-sterile mutant was found in the population of a short-duration pigeonpea (Cajanus cajan[L.] Millsp.) cultivar ICPL 85010. This mutant is characterized by light yellow anthers of reduced size that are devoid of pollen grains. This mutant was crossed with two pigeonpea cultivars to study its inheritance. The F1, F2, and test cross data of the two crosses suggested that this male sterility trait is genetic in origin and is controlled by a single recessivegene. The F1 (mutant x ICPL 85010) plants were crossed with translucent (ms1) and arrowhead type (ms2) genetic male steriles reported earlier to study their allelic relationships. Segregation in the three-way cross F1 and F2 populations revealed that the mutant male-sterile gene was nonallelic to ms1 and ms2 loci and it is designated ms3. The new male sterility sources in pigeonpea will help in producing high-yielding hybrids and populations in diverse phenological groups.  相似文献   

17.
18.
Liang F  Xin X  Hu Z  Xu J  Wei G  Qian X  Yang J  He H  Luo X 《植物学报(英文版)》2011,53(4):312-323
A dwarf mutant, designated LB4D, was obtained among the progeny of backcrosses to a wild rice introgression line. Genetic analysis of LB4D indicated that the dwarf phenotype was controlled by a single semidominant dwarfing gene, which was named LB4D. The mutants were categorized as dn-type dwarf mutants according to the pattern of internode reduction. In addition, gibberellin (GA) response tests showed that LB4D plants were neither deficient nor insensitive to GA. This study found that tiller formation by LB4D plants was decreased by 40% compared with the wild type, in contrast to other dominant dwarf mutants that have been identified, indicating that a different dwarfing mechanism might be involved in the LB4D dominant mutant. The reduction of plant height in F(1) plants ranged from 27.9% to 38.1% in different genetic backgrounds, showing that LB4D exerted a stronger dominant dwarfing effect. Using large F(2) and F(3) populations derived from a cross between heterozygous LB4D and the japonica cultivar Nipponbare, the LB4D gene was localized to a 46 kb region between the markers Indel 4 and Indel G on the short arm of chromosome 11, and four predicted genes were identified as candidates in the target region.  相似文献   

19.
20.
We have investigated the role of ethylene in shoot regeneration from cotyledon explants of Arabidopsis thaliana. We examined the ethylene sensitivity of five ecotypes representing both poor and prolific shoot regenerators and identified Dijon-G, a poor regenerator, as an ecotype with dramatically enhanced ethylene sensitivity. However, inhibiting ethylene action with silver nitrate generally reduced shoot organogenesis in ecotypes capable of regeneration. In ecotype Col-0, we found that ethylene-insensitive mutants (etr1-1, ein2-1, ein4, ein7) exhibited reduced shoot regeneration rates, whereas constitutive ethylene response mutants (ctr1-1, ctr1-12) increased the proportion of explants producing shoots. Our experiments with ethylene over-production mutants (eto1, eto2 and eto3) indicate that the ethylene biosynthesis inhibitor gene, ETO1, can act as an inhibitor of shoot regeneration. Pharmacological elevation of ethylene levels was also found to significantly increase the proportion of explants regenerating shoots. We determined that the hookless1 (hls1-1) mutant, a suppressor of the ethylene response phenotypes of ctr1 and eto1 mutants, is capable of dramatically enhancing shoot organogenesis. The effects of ACC and loss of HLS1 function on shoot organogenesis were found to be largely additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号