首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

The rate of progression of Dutch elm disease can be continuously and quantitatively estimated from sap flow measurements.

Abstract

Response of sap flow to inoculation with Ophiostoma novo-ulmi, a causal agent which causes vascular mycosis called Dutch elm disease, was studied in a field experiment comprised of 4-year-old wych elm trees (Ulmus glabra). Sap flow was measured on inoculated trees using the trunk heat balance method with external heating (EMS 62, Czech Republic) throughout the experiment. The first detectable symptoms of reduction in sap flow occurred 6 days after inoculation and all inoculated trees died within 16 days. Our experiment confirmed the ability of O. novo-ulmi to quickly kill young elm trees. The disease progressed faster than in previous experiments utilizing O. ulmi. To the best of our knowledge, this is the first experiment using sap flow measurements on trees inoculated by O. novo-ulmi. The trunk heat balance sap flow method is an effective non-invasive tool for continuous quantitative monitoring of the progression of vascular tree diseases, and show increased potential for field and greenhouse studies on changes in xylem hydraulic conductivity in a wide range of broadleaved and coniferous tree species.  相似文献   

2.
For the first time, in situ field measurements of sap flow were conducted in adult Dracaena cinnabari plant native to the arid tropical climate of Socotra Island. The heat field deformation (HFD) method was applied using both single and multi-point sensors to study azimuthal and radial sap flow variability in stem, roots and first-order branches over two weeks during a winter monsoon. The main aim of this work was to monitor sap flow in adult D. cinnabari in-situ to better understand its physiological adaptation to extreme arid environments. The second aim was to compare our results with earlier sap flow measurements in adult D. draco uing the same HFD method. The last question we wanted to answer was comparison of sap flow measurements in both, young and adult Dracaena species. We found that sap flow magnitude is low and of a similar range in all observed D. species. High sap flow variability was recorded in different parts of adult D. cinnabari plant which changed throughout the day responding to interplay between intrinsic and extrinsic water potential gradients induced by sunlight. Maximum sap flow levels had variable pattern around stem in response to sun exposure, similarly as it was observed in adult D. draco plant. Sensors installed tangentially in stem xylem showed that water transport in adult D. cinnabari may move in lateral direction. This work also presents several methodological aspects detected from earlier observations of dicots which proved to be more pronounced in adult D. species. These methodologies relate to interpreting negative sap flow rates in conjunction with established axial flow reversal during hydraulic redistribution usually occurring under low evaporative demands and dry soil. Conversely, flow reversal during the day under high evaporative demands and wet soil may designate lateral water movement induced by internal water redistribution.  相似文献   

3.
Xylem sap composition of spruce is influenced by several factors, such as the sampled organ, the sampling period, the availability of soil nutrients, and the soil water potential. Based on literature data and ongoing investigations carried out with adult trees, we present an overview on the main factors influencing xylem sap concentrations of Norway spruce. Direct measurements of nutrient fluxes in the xylem sap are then used to suggest a general scheme of mineral element cycling within adult trees. In Norway spruce (Picea abies Karst.), nutrient concentration in the xylem sap was higher in twigs and fine roots compared to the bottom of the trunk, the highest concentrations beeing observed in spring during the shoot elongation. Xylem sap concentrations were higher in spruce growing at nutrient rich sites than at poor sites. The combination of twig and trunk xylem sap analysis, together with xylem flow measurements in the trunk during the course of a vegetation period allowed the quantification of mineral fluxes via xylem sap flow in the trunk and twigs. These results were compared to gross mineral uptake measurements at the same site. Ca flux in the trunk xylem sap was lower than the gross uptake of Ca. Mg flux in trunk sap was approximately equivalent to Mg gross uptake whereas P and K fluxes in trunk sap were much higher than the gross uptake. Fluxes of Ca, Mg, K and P in the twig sap were much higher than that in trunk sap. Data suggest that internal cycling is responsible for a large part of the nutrient fluxes in the xylem sap of the crown. Xylem sap composition thus appears to be a tool which can complement other sources of information on mineral uptake and cycling in adult spruce  相似文献   

4.
桑玉强  张劲松 《生态学报》2014,34(23):6828-6836
核桃是华北山区重要的经济树种,但该地区水资源紧缺,因此研究核桃液流耗水变化及其对气象因子的响应对于加强核桃水分管理、确定水分承载力具有指导意义。2008—2010年连续3个生长季节观测分析了华北山区核桃单株液流变化特征,研究了不同时间尺度(日尺度、月尺度)核桃液流与气象因子、参考作物蒸散量(ET0)的关系,并利用2009—2010年数据建立了拟合方程,在此基础上用拟合方程的估算值与2008年液流实测值进行了对比验证。结果表明:核桃液流具有明显的时间变化特征,最大液流量出现在5、6月份,2008—2010年生长季节(4—9月份)核桃液流量分别为893.23 L、854.88 L和841.77 L,日平均液流量分别为4.96 L、4.75 L和4.68 L。液流年际差异主要是由年降雨量引起。核桃液流与不同时间尺度下气象因子、ET0均有较好的相关性,且随着时间尺度的增加,二者间的相关性变大。利用2009—2010年液流实测值与气象因子、ET0建立的拟合方程,对2008年液流值进行了拟合,并与实测值进行了对比验证,发现不同时间尺度下液流拟合值与实测值均具有较好的一致性。在不能实现对液流进行连续观测的情况下,可以结合当地的气象资料、ET0等因子,利用建立的拟合方程对树木液流进行估算,弥补缺失的数据,具有较高的精确性,可用于指导当地核桃水分管理。  相似文献   

5.
There are conflicting reports on the accuracy of the thermal dissipation probe (TDP, the Granier method) measurement using the original formula, which is widely used to estimate the transpiration of individual trees and forest stands. In this article, six woody species of three wood types were used to study a possible association between TDP measurement accuracy and wood anatomical characteristics, including the vessel diameter and density, as well as sapwood depth. We found that TDP technique with Granier’s original equation underestimated the sap flux density in six species to various degrees, dependent on conduit size and sap flux. Our calibration using two conifers with small diameters and a high density of tracheids was relatively consistent with Granier’s calibration; however, because there were larger diameters and lower densities of vessels in the two diffuse-porous species, the original calibration significantly underestimated sap flow. Two ring-porous species had the largest diameters and lowest densities of vessels. In particular, Robinia pseudoacacia possessed the shallowest sap wood depth, less than a probe length. Our calibration for the ring-porous species, especially R. pseudoacacia, deviated far from the original calibration, which mostly underestimated the sap flow. The degree of underestimation was well associated with sap wood depth and the radial diameter and density distribution of conduits. Our results demonstrated that a new calibration must be operated for each species together with the sapwood depth determination and more probes may be applied for one stem in the field to obtain the more accurate sap flux. In addition, we investigated the effects of different environmental temperature and perfusing fluid composition on the TDP-based sap flux measurement. We found that an environmental temperature reduction from 25 to 0 °C did not alter the values of the maximum temperature difference (ΔTm) between a heated probe and a reference probe when there was no sap flow, verifying that ΔTm measured at night can be used as a reference in daytime.  相似文献   

6.
Improvement of the heat pulse method for determining sap flow in trees   总被引:11,自引:0,他引:11  
Abstract. The heat pulse method for determining sap flux in large woody sterns was modified for easier field operation. It uses the measurement of the time elapsed between heat pulse release by a line heater radially inserted in the stem, and the occurrence of maximum temperature 15 mm downstream of the heater. This spacing between heater and thermometer is critical to the reliability of the measurement. Calculations using uncorrected theory provide estimates of the sap flux density in stems with both uniform and non-uniform cross-sectional distribution of conducting tissues which are about 55% of the actual sap flux density. This factor results from insufficient thermal homogeneity between tissues where sap flow occurs and tissues where sap flow has been interrupted.
Sap flow in trunks of citrus trees was inferred from measurements of the cross-sectional distribution of sap flux density. Variability of sap flux density is specific to each trunk and is time-dependent and imposes multiple radial and angular measurements. The method was checked in a citrus trunk ramified into three branches. Instantaneous determinations of the flow in the trunk and in the branches differed by less than 5.7%. The daily values agreed within 2.8%.  相似文献   

7.
Tyree MT 《Plant physiology》1983,73(2):277-285
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.

Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.

These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.

  相似文献   

8.
杜梦鸽  王胜  樊军 《生态学杂志》2017,28(8):2438-2444
准确测量树干液流对研究树木耗水特性、植物生理和生态水文效应等具有重要意义.本文选用一种新型五针热脉冲多功能数字探头(PHPP),运用热脉冲理论,测量小叶杨树干液流,并与热扩散探针(TDP)进行对比分析,探究五针热脉冲探头测量树干液流的适用性和准确性.结果表明: 五针热脉冲探头能够准确揭示小叶杨树干液流昼夜变化规律,并且与热扩散探针测量结果呈显著的线性相关关系,R2达到0.90,均方根误差为2.75,平均相对误差为11%.PHPP探头能较为精确地识别低液流和逆液流,可以快速准确地拟合热参数,直接测得树干液流速率,应用潜力较大.  相似文献   

9.
树木胸径大小对树干液流变化格局的偏度和时滞效应   总被引:3,自引:0,他引:3  
通过分析具不同水力结构的马占相思、荷木和粉单竹液流变化格局的偏度和时滞,探讨液流的空间分布特征及对冠层蒸腾的影响。结果表明:荷木的液流格局偏度和时滞随树木胸径的增加呈减小的趋势,但马占相思由于冠层开阔和林分分化程度高而规律不明显,粉单竹液流偏度随胸径减少,由于冠幅较小,接受的光照较均匀,个体间的时滞差异不明显,但时滞值比胸径近似的荷木小。树干水分传输过程中存在液流再分配的现象,边材的导水效率可能是影响时滞的重要原因。冠层蒸腾的空间异质性与树木储存水有关,大树储存水较多,冠层蒸腾的异质性小;小树储存水较少,液流被优先分配到光照充足的东南方位,导致冠层蒸腾较高的异质性。旱季受土壤水分的限制,大树储存水对蒸腾的贡献大于湿季,而小树蒸腾由于受到储水容量的制约,储存水对蒸腾的贡献小于湿季。冠层接受光照的迟或早以及辐射量的大小是引起蒸腾时间变化格局和树干不同方位液流格局差异的重要原因,但液流的横向交换弱化了这种现象,往往是个体间的差异掩盖了方位的差异。湿季较小胸径的树木比偏值(枝下高与胸高处液流偏度的比值)大于旱季,而较大胸径的树木比偏值恰好相反,总体而言,比偏值随着胸径的增加而逐渐下降。  相似文献   

10.
Thermometric sap flow sensors are widely used to measure water flow in roots, stems and branches of plants. Comparison of the timing of flow in branches and stems has been used to estimate water capacitance of large trees. We review studies of sap flow in branches and present our own data to show that there is wide variation in the patterns and timing of sap flow of branches in different parts of the crown, owing to the course of daily solar illuminance. In contiguous forest, east-facing and upper branches are illuminated earlier than west-facing and lower branches and most capacitance studies do not include adequate information about branch sampling regimes relative to the overall pattern of crown illuminance, raising questions about the accuracy of capacitance estimates. Measuring only upper branches and normalising these results to represent the entire crown is dangerous because flows at the stem base likely peak in response to maximum crown illuminance (and transpiration) and this will differ compared to the timing of peak flows in upper branches. We suggest that the magnitude of flow lags between branches and stems needs further study, with careful attention to branch position and method application before a robust understanding of capacitance, particularly in woody tissues of large trees, can be formed. We did not detect flow lags in the world’s tallest and largest tree species Sequoia sempervirens and Sequoiadendron giganteum, despite measurement along large pathlengths (∼57 and 85 m), which raises questions as to why large flow lags are often recorded for much smaller species. One conspicuous possibility is the different methods used among studies. Constant-heating methods such as the thermal dissipation probe (and also heat balance methods) include heat capacitance behaviour due to warming of wood tissues, which delays the response of the sensors to changing sap flow conditions. We argue that methods with intrinsic heat-capacitance present dangers when trying to measure water-capacitance in trees. In this respect heat pulse methods hold an advantage.  相似文献   

11.
祁连山青海云杉树干液流密度的优势度差异   总被引:1,自引:0,他引:1  
以祁连山排露沟小流域青海云杉林为研究对象,选取有代表性的优势木、亚优势木、中等木和被压木各3—5株,2015年6月16日至10月14日应用热扩散技术对不同优势度青海云杉树干液流密度进行测定,并同步测定相关的林外气象因子。结果表明:(1)青海云杉液流密度呈昼高夜低趋势,晴天液流密度变化幅度较大,而阴雨天变化幅度较小。(2)晴天树木优势度越大,其液流在日内的启动越早,结束越晚,峰值也越大;优势木的平均液流密度为(0.0758±0.0475)m L cm~(-2)min~(-1),是亚优势木的1.5倍,是中等木和被压木的1.68倍。(3)青海云杉平均液流密度基本呈现6月份最大,其次是8月份,9、10月份明显减小,且优势木亚优势木中等木被压木。(4)相关性分析和逐步回归表明,青海云杉日均液流密度与太阳辐射强度、饱和水气压差和空气温度呈正相关关系,与空气相对湿度和降雨量呈负相关关系。影响优势木、亚优势木和中等木液流密度的主要气象因子是太阳辐射强度,被压木液流密度主要受空气相对湿度的影响。  相似文献   

12.
利用稳定氢同位素和热扩散技术研究张北防护林杨树的水分来源和蒸腾耗水,分析确定未退化与退化杨树的水分关系差异.结果表明:在生长季节中退化杨树主要利用0~30 cm土壤水分,未退化杨树主要利用30~80 cm土壤水分,两者的水分来源不同.旱季时,未退化杨树利用深层土壤水分和地下水的比例明显高于退化杨树.雨季中,杨树对0~30 cm土壤水分的利用比例增加,退化杨树增加幅度明显高于未退化杨树,对30~180 cm土壤水分的利用比例均减少.未退化杨树的液流速率大于退化杨树,不同天气中液流速率表现出相似的变化趋势,但未退化杨树液流的启动时间比退化杨树早.相关分析表明,未退化和退化杨树液流速率与土壤温度、风速、太阳辐射、相对湿度、空气温度均呈极显著的相关关系.退化杨树液流速率与土壤温度和空气相对湿度呈极显著负相关,与其他因素呈显著正相关,而未退化杨树仅与空气相对湿度呈极显著负相关,与其他因素均呈显著正相关关系,表明退化和未退化杨树蒸腾耗水易受环境条件的影响.退化杨树液流日累计量明显小于未退化杨树,表明其蒸腾耗水量较少;退化杨树水分来源浅,蒸腾耗水的减少并不能阻止林分退化.  相似文献   

13.

Key message

Stem WC may decline during the day. Zero-flow dT m increases when WC decreases. Use of nighttime dT m in the calculation of sap flux density during the day might introduce errors.

Abstract

There is increasing evidence of diel variation in water content of stems of living trees as a result of changes in internal water reserves. The interplay between dynamic water storage and sap flow is of current interest, but the accuracy of measurement of both variables has come into question. Fluctuations in stem water content may induce inaccuracy in thermal-based measurements of sap flux density because wood thermal properties are dependent on water content. The most widely used thermal method for measuring sap flux density is the thermal dissipation probe (TDP) with continuous heating, which measures the influence of moving sap on the temperature difference between a heated needle and a reference needle vertically separated in the flow stream. The objective of our study was to investigate how diel fluctuations in water content could influence TDP measurements of sap flux density. We analysed the influence of water content on the zero-flow maximum temperature difference, dT m, which is used as the reference for calculating sap flux density, and present results of a dehydration experiment on cut branch segments of American sycamore (Platanus occidentalis L.). We demonstrate both theoretically and experimentally that dT m increases when stem water content declines. Because dT m is measured at night when water content is high, this phenomenon could result in underestimations of sap flux density during the day when water content is lower. We conclude that diel dynamics in water content should be considered when TDP is used to measure sap flow.  相似文献   

14.
Hydraulic redistribution in three Amazonian trees   总被引:13,自引:0,他引:13  
About half of the Amazon rainforest is subject to seasonal droughts of 3 months or more. Despite this drought, several studies have shown that these forests, under a strongly seasonal climate, do not exhibit significant water stress during the dry season. In addition to deep soil water uptake, another contributing explanation for the absence of plant water stress during drought is the process of hydraulic redistribution; the nocturnal transfer of water by roots from moist to dry regions of the soil profile. Here, we present data on patterns of soil moisture and sap flow in roots of three dimorphic-rooted species in the Tapajós Forest, Amazônia, which demonstrate both upward (hydraulic lift) and downward hydraulic redistribution. We measured sap flow in lateral and tap roots of our three study species over a 2-year period using the heat ratio method, a sap-flow technique that allows bi-directional measurement of water flow. On certain nights during the dry season, reverse or acropetal flow (i.e.,in the direction of the soil) in the lateral roots and positive or basipetal sap flow (toward the plant) in the tap roots of Coussarea racemosa (caferana), Manilkara huberi (maçaranduba) and Protium robustum (breu) were observed, a pattern consistent with upward hydraulic redistribution (hydraulic lift). With the onset of heavy rains, this pattern reversed, with continuous night-time acropetal sap flow in the tap root and basipetal sap flow in lateral roots, indicating water movement from wet top soil to dry deeper soils (downward hydraulic redistribution). Both patterns were present in trees within a rainfall exclusion plot (Seca Floresta) and to a more limited extent in the control plot. Although hydraulic redistribution has traditionally been associated with arid or strongly seasonal environments, our findings now suggest that it is important in ameliorating water stress and improving rain infiltration in Amazonian rainforests. This has broad implications for understanding and modeling ecosystem process and forest function in this important biome.  相似文献   

15.
Since the late eighties a handy and user-friendly sap flow meter (Dynagage®) is on the market which can quantify 0205 the sap flow through intact plant stems, based on the stem heat balance method. The documentation about its accuracy and reliability, however, is still too limited to use it as a standard method in field experiments with apple trees. We therefore tested this commercial system on potted apple trees (Malus domestica L.; cv. Red Elstar and Jonagold; on rootstock M9 vf) with stem diameters of 1.8 to 4 cm. The measured sap flow was compared with mass loss measured by an automated balance, supposing the total mass loss of the trees was equal to the water loss by transpiration. The results revealed three major problems:
1.  When there was no optimum contact of the elements of the gauge with the stem, which is typically very irregular on young apple trees, the calculated sap flow rates (accumulated through 24 h) showed errors >20%.
2.  On 4 year-old trees the calculated sap flow rate showed considerable time lags in periods with abruptly changing transpiration rates, mainly because this sap flow method does not account for energy which is stored in the heated stem section.
3.  The constant power input to the stem given with this sap flow meter caused heat damages to the bark tissue after >6 days of continuous measurements.
In order to avoid these problems we constructed a sap flow meter which guarantees an optimum contact with the stem and works with continuously controlled power supply. Both aspects, response time and effect on the bark tissue, could be improved: in all measurement series the average sap flow (during light period) deviated <4% and=" often="><1% from=" mass=" loss.=" the=" differences=" were=" usually="><15% for=" the=" short-term=" averages=" through=" 15–30=" min.=" the=" modified=" sap=" flow=" meter=" also=" proved=" reliable=" during=" 10-day=" measurements=" in=" the=" field.=" however,=" for=" time-accurate=" measurements=" on=" apple=" trees=" with=" a=" stem=" diameter=">3–4 cm accounting for the energy stored in the heated stem section became indispensable.  相似文献   

16.
In order to quantify and characterize the variance in rainforest tree physiology, whole tree sap flow responses to local environmental conditions were investigated in 10 species of trees with diverse traits at La Selva Biological Station, Costa Rica. A simple model was developed to predict tree sap flow responses to a synthetic environmental variable generated by a principle components analysis. The best fit was obtained with a sigmoid function which explained between 74 and 93% of the variation in sap flux of individual trees. Sap flow reached an asymptote where higher light and evaporative demand did not cause sap flux to increase further. Soil moisture had little influence on sap flux. The morphological characteristics of the trees significantly affected sap flow; taller trees responded to changes in environmental variables sooner than shorter trees and high liana cover buffered tree sap flow responses to weather. The effect of species‐specific differences on the model was small; the mean effectiveness of the model was reduced by 6% when parameters were estimated from a single pool of measurements taken from all individuals. The results indicate that sap flow response could be effectively estimated using a simple general model and composite environmental index for these 10 diverse tree species.  相似文献   

17.
The host-pathogen combinations—Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.  相似文献   

18.
Information on the water use of Pinus patula plantations isrequired to predict the impact of forest plantations on waterresources in South Africa. The heat pulse velocity (HPV) methodis a promising technique for measuring water use by trees, andhas been shown to measure sap flows accurately in a varietyof hardwood trees. This method has not been sufficiently verifiedfor pine trees where the presence of a strongly-defined ringstructure in the sapwood gives rise to a complex radial patternof sap flow. The purpose of this study was to compare wateruptake by cut trees to simultaneous HPV sap flow measurementsin the same tree. Fourteen trees were used for this comparison.Results showed that HPV sap flow estimates consistently overestimatedcut-tree uptake by an average of 49%. The bias is attributedto heat averaging across non-conducting latewood rings. Wateruptake was found to be highly correlated to the product of under-barkcross-sectional area and wound-corrected mean HPV, and it issuggested that this empirical relation provides a more appropriateway of estimating water use by this species. Key words: Heat pulse velocity, sap flow, Pinus patula, transpiration  相似文献   

19.
This study characterizes whole tree root system distribution in a non-destructive way based on its functional parameters, particularly the sap flow patterns in stems. This approach particularly considers sap flow variation across stems, both radial and circumferential patterns of flow that are usually used for a better integration of sap flow density at the whole tree level. We focused at: (1) Showing examples of sap flow variation across stems at a defined situation (high midday values at the period of non-limiting water supply; (2) Analyzing radial flow patterns in terms of root distribution; (3) Validating these results at the stand level (mean data of series of individual trees) using results of classical biometric methods used at the same site; and (4) Applying the results for evaluation of root distribution around leaning trees. Sap flow rate was measured by the heat deformation method on a set of 14 trees at an experimental pine forest stand in Brasschaat (Belgium) during the growing season of 2000. Sap flow variation across stems was measured at a total of 700 points. Amounts of water supplied by superficial (horizontally oriented) and sinker (vertically oriented) roots were estimated from sap flow patterns. The vertical distribution of absorbing roots as derived from the analysis of sap flow patterns in stem sapwood was very similar to the distribution determined by the classical biometric analysis of fine roots. Trees leaning to the East had stem radii at the stump level and crown radii enhanced in the leaning direction. Sinker roots showed higher absorption activities in the leaning direction, but superficial roots were more absorbing in the opposite direction. The application of the above-described method allows for a better evaluation of the whole-tree behavior and facilitates the evaluation of tree and stand properties in traditional forest stands, which are not equipped for detailed scientific research. This may also facilitate practical applications in landscape-level studies.  相似文献   

20.
为了揭示树干自然温度梯度的变化规律及其对树干液流速率测算结果的影响,于2007年5月至10月利用改进的SF-L型热扩散式树液流测定装置,对北京低山区生长的油松和侧柏的树干自然温度梯度、加热温差和气象、土壤水分因子进行了连日同步监测。结果表明:(1)树干自然温度梯度对加热针温差的影响,侧柏大于油松。(2)树干自然温度梯度对液流速率计算结果的影响具有显著的统计意义(P0.01),平均误差大于30%,误差峰值出现在太阳高度角较小的时候。(3)影响树干自然温度梯度最重要的环境因子是光照强度,其次是空气温度。上述结果说明,树干自然温度梯度对热扩散法测定的液流速率的影响不可忽视,研究树木耗水机制时应予以充分考虑。光照强度和空气温度是影响树干自然温度梯度最重要的两个因子,但其影响机制仍需进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号