首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural studies have been carried out on the O-specific polysaccharide from the lipopolysaccharide of the reference strain (CDC 1604-55) for serogroup O8 of Serratia marcescens. The polymer has a branched, tetrasaccharide repeating unit of D-galactose(Gal),D-glucose(Glc), and 2-acetamido-2-deoxy-D-glucose(GlcNAc) with the following structure: (Formula: see text). The anomeric configuration assigned to the glucose residue differs from that (beta) previously proposed [Tarcsay, L., Wang, C. S., Li, S.-C. and Alaupovic, P. (1973) Biochemistry 12, 1948-1955]. The structure of the O8 polymer is identical with that of one of two polymers present in the cell envelope of a strain (CDC 1783-57) of S. marcescens O14.  相似文献   

2.
A "neutral" polymer of glucose, galactose, and 2-acetamido-2-deoxyglucose (molar ratios 1:1:2) has been isolated from the lipopolysaccharide of Serratia marcescens strain C.D.C. 1783-57 (O14:H9). Degradative and spectroscopic studies established that the polysaccharide has a branched tetrasaccharide repeating-unit of the structure shown. The polymer was absent from other strains of serogroup O14 studied, but a polymer differing only in the configuration of the glucose residue has previously been isolated from a strain of S. marcescens O8. The polymer from strain C.D.C. 1783-57 also shares structural features with the Escherichia coli O18 antigen, which is known to be serologically related to the S. marcescens O8 antigen. (Formula: see text).  相似文献   

3.
Abstract In an earlier study of the distribution of O-serotypes among clinical isolates of Serratia marcescens , two apparently new serotypes were identified, represented by strains S1254 and S3255. Studies using ELISA, immunoblotting and the Quellung reaction have shown that they qualify for inclusion in the O-antigenic typing scheme on three counts: (1) they possess chemically distinct O-antigenic repeating units, (2) the O-antigens are serologically distinguishable from all others, and (3) they are found in a significant proportion of clinical S. marcescens strains (13% and 6% respectively). S1254, the type strain for serotype O27, is an acapsular strain which expressed a glucorhamnan with a disaccharide repeating unit as its lipopolysaccharide side chain. It cross-reacts with serotype O4, the O antigen of which is an O-acetylated form of the O27 glucorhamnan, but this cross-reaction can be eliminated by reciprocal cross-absorption. S3255, the type strain for serotype O28, has a mannose homopolymer as its O-antigen and is the only S. marcescens serotype with a trimeric repeating-unit structure. However, it cross-reacts with the O5 serotype strain due to similarities in their acidic capsular polysaccharides. Cross-absorption and the production of serum to an acapsular variant of serotype strain O28 produced typing reagents which could differentiate serotypes O5 and O28.  相似文献   

4.
Both a neutral and an acidic polymer have been isolated from a lipopolysaccharide extract of the reference strain for Serratia marcescens serogroup O22. The neutral polymer has a linear structure with the repeating unit shown. The same tetrasaccharide unit also forms the backbone of the branched neutral polymer isolated from the reference strain for serogroup O10, which cross-reacts strongly with O22. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-L-+ ++Rhap-(1----3)-alpha- D-GlcpNAc-(1----  相似文献   

5.
The structure of the LPS from Serratia marcescens serotype O19 was investigated. Deamination of the LPS released the O-chain polysaccharide together with a fragment of the core oligosaccharide. The following structure of the product was determined by NMR spectroscopy, mass spectrometry, and chemical methods: [carbohydrate structure: see text] The main polymer consists of a repeating disaccharide V-U and is present on average of 18 units per chain as estimated by integration of signals in the NMR spectra. The residue O corresponds to the primer, which initiates biosynthesis of the O-chain, and an oligomer of a disaccharide R-S is an insert between the primer and the main polymer. The polysaccharide has a beta-Kdo residue at the non-reducing end, a feature similar to that observed previously in the LPS from Klebsiella O12.  相似文献   

6.
A neutral polymer (the putative O antigen) has been isolated from the lipopolysaccharide of the reference strain for Serratia marcescens serogroup 018. From the results of spectroscopic and degradative studies, the repeating unit of the polymer was identified as a linear tetrasaccharide having the structure shown. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----6)-alpha-D- GlcpNAc-(1----  相似文献   

7.
The lipopolysaccharide extract from the cell wall of the reference strain for Serratia marcescens serogroup O18 contained, in addition to a neutral glycan characterised previously, an acidic glycan. Acidity was contributed both by D-glucuronic acid and by 4-O-[(R)-1-carboxyethyl]-D-glucose (4-O-Lac-D-Glc). By using n.m.r. spectroscopy, methylation analysis, and chemical degradations, the repeating unit of the acidic glycan was identified as a branched hexasaccharide having the structure shown; an O-acetyl group also present was not located. The glycan is believed to define the O18 serogroup, but is probably not an integral component of the lipopolysaccharide. [formula: see text].  相似文献   

8.
A recombinant clone encoding enzymes for Klebsiella pneumoniae O12-antigen lipopolysaccharide (LPS) was found when we screened for serum resistance of a cosmid-based genomic library of K. pneumoniae KT776 (O12:K80) introduced into Escherichia coli DH5alpha. A total of eight open reading frames (ORFs) (wb(O12) gene cluster) were necessary to produce K. pneumoniae O12-antigen LPS in E. coli K-12. A complete analysis of the K. pneumoniae wb(O12) cluster revealed an interesting coincidence with the wb(O4) cluster of Serratia marcescens from ORF5 to ORF8 (or WbbL to WbbA). This prompted us to generate mutants of K. pneumoniae strain KT776 (O12) and to study complementation between the two enterobacterial wb clusters using mutants of S. marcescens N28b (O4) obtained previously. Both wb gene clusters are examples of ABC 2 transporter-dependent pathways for O-antigen heteropolysaccharides. The wzm-wzt genes and the wbbA or wbbB genes were not interchangeable between the two gene clusters despite their high level of similarity. However, introduction of three cognate genes (wzm-wzt-wbbA or wzm-wzt-wbbB) into mutants unable to produce O antigen allowed production of the specific O antigen. The K. pneumoniae O12 WbbL protein performs the same function as WbbL from S. marcescens O4 in either the S. marcescens O4 or E. coli K-12 genetic background.  相似文献   

9.
The acidic polysaccharide from Serratia marcescens serogroup O14:K12 was analyzed by means of chemical studies and NMR spectroscopy and its repeating unit structure found to be carbohydrate sequence [see text] O-Acetyl groups are proposed to be present in non-stoichiometric amounts on O-6 on one of the hexose residues in the main chain.  相似文献   

10.
Partially acetylated glucorhamnans have been isolated from the lipopolysaccharides of three strains of Serratia marcescens. The polymer from the reference strain (C.D.C. 864-57) for serogroup O4 has the disaccharide repeating-unit shown below, in which acetylation at position 2 of the rhamnosyl residue is approximately 90% complete. Similar glucorhamnans from the reference strain (C.D.C. 843-57) for serogroup O7 and from a pigmented strain (NM) of serogroup O14 differ only in the configuration of the L-rhamnopyranosyl residue (beta) and the extent of O-acetylation (O7, almost stoichiometric; NM, 80-90%). Glucorhamnans of the second type have been isolated previously from the lipopolysaccharides of other strains of S. marcescens, including the reference strain for serogroup O6 and another pigmented O14 strain (N.C.T.C. 1377). In all cases, the lipopolysaccharide extracts also contained acidic glycans, but the glucorhamnans are believed to constitute the integral side-chains. (Formula: see text).  相似文献   

11.
Both neutral and acidic polymers have been isolated from the lipopolysaccharide extract of the reference strain (C.D.C. 4523-60) for Serratia marcescens serogroup O15. By means of n.m.r. spectroscopy, methylation analysis, and studies of degradation products, the acidic polysaccharide was shown to have a branched pentasaccharide repeating-unit with the following structure. (Formula: see text)  相似文献   

12.
Structural studies have been carried out on the putative O-specific polysaccharide of the reference strain (C.D.C. 3607-60) for Serratia marcescens O13. Circumstantial evidence that the O13 antigen is a microcapsular, acidic polymer, rather than an integral part of the lipopolysaccharide, has been obtained. Degradative and spectroscopic studies established that the polymer is based on the repeating unit shown, in which the glucuronic acid residue of the linear pentasaccharide carries the lateral 2-acetamido-2-deoxy-beta-D-glucopyranosyl substituent in only about half of the units. The same polymer, again with non-stoichiometric substitution, is also produced by strain IP 421 (O13:H7). The latter strain also produces a neutral polymer which appears to constitute the side chain of the lipopolysaccharide. This polymer, which has a disaccharide repeating-unit of 2-substituted beta-D-ribofuranosyl and 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residues, has been isolated previously from the lipopolysaccharides of the reference strains for S. marcescens serogroups O12 and O14, and appears to be the antigen known to be shared by these strains. (Formula: see text).  相似文献   

13.
The Serratia marcescens N28b wbbL gene has been shown to complement the rfb-50 mutation of Escherichia coli K-12 derivatives, and a wbbL mutant has been shown to be impaired in O4-antigen biosynthesis (X. Rubirés, F. Saigí, N. Piqué, N. Climent, S. Merino, S. Albertí, J. M. Tomás, and M. Regué, J. Bacteriol. 179:7581-7586, 1997). We analyzed a recombinant cosmid containing the wbbL gene by subcloning and determination of O-antigen production phenotype in E. coli DH5alpha by sodium dodecyl sulfate-polyacrylamide electrophoresis and Western blot experiments with S. marcescens O4 antiserum. The results obtained showed that a recombinant plasmid (pSUB6) containing about 10 kb of DNA insert was enough to induce O4-antigen biosynthesis. The same results were obtained when an E. coli K-12 strain with a deletion of the wb cluster was used, suggesting that the O4 wb cluster is located in pSUB6. No O4 antigen was produced when plasmid pSUB6 was introduced in a wecA mutant E. coli strain, suggesting that O4-antigen production is wecA dependent. Nucleotide sequence determination of the whole insert in plasmid pSUB6 showed seven open reading frames (ORFs). On the basis of protein similarity analysis of the ORF-encoded proteins and analysis of the S. marcescens N28b wbbA insertion mutant and wzm-wzt deletion mutant, we suggest that the O4 wb cluster codes for two dTDP-rhamnose biosynthetic enzymes (RmlDC), a rhamnosyltransferase (WbbL), a two-component ATP-binding-cassette-type export system (Wzm Wzt), and a putative glycosyltransferase (WbbA). A sequence showing DNA homology to insertion element IS4 was found downstream from the last gene in the cluster (wbbA), suggesting that an IS4-like element could have been involved in the acquisition of the O4 wb cluster.  相似文献   

14.
Abstract The surface polysaccharides of the two most recently proposed O-serotype strains of Serratia marcescens , O25 and O26, were characterised in terms of their chemical structure and immunological reactions. No polymer was isolated from O25, which was shown to lack both capsular K-antigen and smooth, O-antigenic lipopolysaccharide. A neutral polysaccharide was isolated from O26 and shown to be a polymer of rhamnose and N -acetylgalactosamine of the type previously found in the O9 and O15 reference strains. Serological cross-reactions among all three strains were demonstrated by using both whole-cell enzyme-linked immunosorbent assay and immunoblotting of lipopolysaccharide resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. No acidic polysaccharide was found in O26 and this was consistent with the absence of an immunogenic capsule. Thus, neither strain qualifies for inclusion as a new serotype in either an O-typing or a K-typing scheme.  相似文献   

15.
A trpE mutant of Serratia marcescens (E-7) was isolated, and the multimeric enzyme tryptophan synthetase (EC 4.2.1.20) was purified to homogeneity from derepressed cells. The A and B subunits were resolved, and the B subunit was partially characterized and compared with the Escherichia coli B subunit as part of a comparative evolution study of the trpB cistron of the trp operon in the Enterobacteriaceae. The S. marcescens B subunit is a dimer (beta(2)), and its molecular weight was estimated to be 89,000. The separate subunits (beta monomers) had molecular weights of approximately 43,000. The B subunit required pyridoxal phosphate for catalytic activity and had an apparent K(m) of 9 x 10(-6) M. The N terminus of the B subunit was unavailable for reaction with terminal amine reagents (blocked), whereas carboxypeptidase digestion released a C-terminal isoleucine. Using S. marcescens B antiserum in agar immunodiffusion gave an almost complete reaction of identity between the B subunits of S. marcescens and E. coli. The antiserum was used in microcomplement fixation, allowing for a comparison of the overall antigenic surface structure of the two B subunits. The index of dissimilarity for the heterologous E. coli enzyme compared with the homologous S. marcescens enzyme was 2.4, indicating extensive similarity of the two proteins at their surfaces. Comparative antiserum neutralization of B-subunit enzyme activity showed the E. coli enzyme to cross-react 85% as well as the S. marcescens enzyme. With regard to the biochemical and immunochemical parameters used in this study, the S. marcescens and E. coli B subunits were either identical or very similar. These findings support the idea that the trpB cistron of the trp operon is a relatively conserved gene in the Enterobacteriaceae.  相似文献   

16.
Abstract The O9 antigen of Burkholderia (Pseudomonas) cepacia has the following disaccharide repeating-unit: → 4)-α-D-Glc-p-(1 → 3)-α-L-Rha p-(1 → The same unit is present in the O antigens of Serratia marcescens strain S1254 and serogroup O4 (predominantly acetylated at O-2 of rhamnose in the latter case).  相似文献   

17.
The putative O-specific polysaccharide of Serratia marcescens N.C.T.C. 1377 is a partially acetylated glucorhamnan. By means of 1H- and 12C-n.m.r. spectroscopy, methylation analysis, and periodate oxidation, it was shown that the polymer has a disaccharide repeating-unit for which the following structure is proposed: leads to 4)-alpha-D-Glcp-(1 leads to 3)-beta-L-Rhap-(1-leads. O-Acetyl groups are probably located at C-2 of the rhamnopyranosyl residues. Except for the extent of O-acetylation, the polysaccharide is identical with the corresponding product from S. marcescens Bizio (A.T.C.C. 264), for which a different structure has previously been proposed.  相似文献   

18.
A cosmid-based genomic library of Serratia marcescens N28b was introduced into Escherichia coli DH5alpha, and clones were screened for serum resistance. One clone was found resistant to serum, to bacteriocin 28b, and to bacteriophages TuIa and TuIb. This clone also showed O antigen in its lipopolysaccharide. Subcloning and sequencing experiments showed that a 2,124-bp DNA fragment containing the rmlD and wbbL genes was responsible for the observed phenotypes. On the basis of amino acid similarity, we suggest that the 288-residue RmlD protein is a dTDP-L-rhamnose synthase. Plasmid pJT102, containing only the wbbL gene, was able to induce O16-antigen production and serum resistance in E. coli DH5alpha. These results suggest that the 282-residue WbbL protein is a rhamnosyltransferase able to complement the rJb-50 mutation in E. coli K-12 derivatives, despite the low level of amino acid identity between WbbL and the E. coli rhamnosyltransferase (24.80%). S. marcescens N28b rmlD and wbbL mutants were constructed by mobilization of suicide plasmids containing a portion of rmlD or wbbL. These insertion mutants were unable to produce O antigen; since strain N28b produces O4 antigen, these results suggest that both genes are involved in O4-antigen biosynthesis.  相似文献   

19.
Serogroups O2 and O3 of Serratia marcescens are differentiated by acidic glycans present in the aqueous phase when lipopolysaccharides are extracted from the reference strains by the aqueous-phenol method. The phenolic phases of these extracts from both strains also contain lipopolysaccharides, from which the same neutral glycan is released on milk acid hydrolysis. The neutral glycan has the disaccharide repeating-unit shown, and accounts for the cross-reactions between the two serogroups and also with serogroup O21: --> 4)-alpha-D-GlcpNAc-(1-->4)-beta-D-ManpNAc-(1--.  相似文献   

20.
Klebsiella pneumoniae O5, Escherichia coli O8 and Serratia marcescens 3255 were shown to cross-react in both ELISA and immunoblotting. The cross-reaction appeared to be due to the O antigen of their lipopolysaccharide (LPS). In addition, there was evidence that the reactions of these strains with their homologous antisera were due, in part, to determinants other than O polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号