首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been proposed that Escherichia coli ribosomal protein S1 is required for the translation of highly structured mRNAs. In this study, we have examined the influence of structural features at or near the start codon of different mRNAs. The requirement for ribosomal protein S1 for translation initiation was determined when (i) the ribosome-binding site (RBS) was either preceded by a 5' non-translated leader sequence; (ii) the RBS was located 5' proximal to a mRNA start codon; and (iii) the start codon was the 5' terminal codon as exemplified by leaderless mRNAs. In vitro translation studies revealed that the leaderless lambda cl mRNA is translated with Bacillus stearothermophilusribosomes, naturally lacking a ribosomal protein S1 homologue, whereas ompA mRNA containing a 5' leader is not. These studies have been verified by toeprinting with E. coli ribosomes depleted for S1. We have shown that S1 is required for ternary complex formation on ompA mRNA but not for leaderless mRNAs or for mRNAs in which the RBS is close to the 5' end.  相似文献   

2.
In eubacteria, the dissociation of the 70 S ribosome into the 30 S and 50 S subunits is the essential first step for the translation initiation of canonical mRNAs that possess 5'-leader sequences. However, a number of leaderless mRNAs that start with the initiation codon have been identified in some eubacteria. These have been shown to be translated efficiently in vivo. Here we investigated the process by which leaderless mRNA translation is initiated by using a highly reconstituted cell-free translation system from Escherichia coli. We found that leaderless mRNAs bind preferentially to 70 S ribosomes and that the leaderless mRNA.70 S.fMet-tRNA complex can transit from the initiation to the elongation phase even in the absence of initiation factors (IFs). Moreover, leaderless mRNA translation proceeds more efficiently if the intact 70 S ribosome is involved compared with the 30 S subunit. Furthermore, excess amounts of IF3 inhibit leaderless mRNA translation, probably because it promotes the disassembly of the 70 S ribosome into subunits. Finally, excess amounts of fMet-tRNA facilitate the IF-independent translation of leaderless mRNA. These observations strongly suggest that leaderless mRNA translation is initiated by the assembled 70 S ribosome and thereby bypasses the dissociation process.  相似文献   

3.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

4.
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.  相似文献   

5.
6.
The bacteriophage λ's cI mRNA was utilized to examine the importance of the 5'-terminal phosphate on expression of leadered and leaderless mRNA in Escherichia coli. A hammerhead ribozyme was used to produce leadered and leaderless mRNAs, in vivo and in vitro, that contain a 5'-hydroxyl. Although these mRNAs may not occur naturally in the bacterial cell, they allow for the study of the importance of the 5'-phosphorylation state in ribosome binding and translation of leadered and leaderless mRNAs. Analyses with mRNAs containing either a 5'-phosphate or a 5'-hydroxyl indicate that leaderless cI mRNA requires a 5'-phosphate for stable ribosome binding in vitro as well as expression in vivo. Ribosome-binding assays show that 30S subunits and 70S ribosomes do not bind as strongly to 5'-hydroxyl as they do to 5'-phosphate containing leaderless mRNA and the tRNA-dependent ternary complex is less stable. Additionally, filter-binding assays revealed that the 70S ternary complex formed with a leaderless mRNA containing a 5'-hydroxyl has a dissociation rate (k(off)) that is 4.5-fold higher compared with the complex formed with a 5'-phosphate leaderless mRNA. Fusion to a lacZ reporter gene revealed that leaderless cI mRNA expression with a 5'-hydroxyl was >100-fold lower than the equivalent mRNA with a 5'-phosphate. These data indicate that a 5'-phosphate is an important feature of leaderless mRNA for stable ribosome binding and expression.  相似文献   

7.
Translation initiation in eukaryotic cells is known to be a complex multistep process which involves numerous protein factors. Here we demonstrate that leaderless mRNAs with initiator Met-tRNA can bind directly to 80S mammalian ribosomes in the absence of initiation factors and that the complexes thus formed are fully competent for the subsequent steps of polypeptide synthesis. We show that the canonical 48S pathway of eukaryotic translation initiation has no obvious advantage over the 80S pathway of translation initiation on leaderless mRNAs and suggest that, in the presence of competing mRNAs containing a leader, the latter mechanism will be preferred. The direct binding of the leaderless mRNA to the 80S ribosome was precluded when such an mRNA was supplied with a 5' leader, irrespective of whether it was in a totally single-stranded conformation or was prone to base pairing. The striking similarity between the mechanisms of binding of leaderless mRNAs with mammalian 80S or bacterial 70S ribosomes gives support to the idea that the alternative mode of translation initiation used by leaderless mRNAs represents a relic from early steps in the evolution of the translation apparatus.  相似文献   

8.
We have cloned and sequenced a new gene from Escherichia coli which encodes a 64-kDa protein. The inferred amino acid sequence of the protein shows remarkable similarity to eIF4A, a murine translation initiation factor that has an ATP-dependent RNA helicase activity and is a founding member of the D-E-A-D family of proteins (characterized by a conserved Asp-Glu-Ala-Asp motif). Our new gene, called deaD, was cloned as a gene dosage-dependent suppressor of temperature-sensitive mutations in rpsB, the gene encoding ribosomal protein S2. We suggest that the DeaD protein plays a hitherto unknown role in translation in E. coli.  相似文献   

9.
10.
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.  相似文献   

11.
Peil L  Virumäe K  Remme J 《The FEBS journal》2008,275(15):3772-3782
Ribosome subunit assembly in bacteria is a fast and efficient process. Among the nonribosomal proteins involved in ribosome biogenesis are RNA helicases. We describe ribosome biogenesis in Escherichia coli strains lacking RNA helicase DeaD (CsdA) or DbpA. Ribosome large subunit assembly intermediate particles (40S) accumulate at 25 degrees C and at 37 degrees C in the absence of DeaD but not without DbpA. 23S rRNA is incompletely processed in the 40S and 50S particles of the DeaD(-) strain. Pulse labeling showed that the 40S particles are converted nearly completely into functional ribosomes. The rate of large ribosomal subunit assembly was reduced about four times in DeaD-deficient cells. Functional activity tests of the ribosomal particles demonstrated that the final step of 50S assembly, the activation step, was affected when DeaD was not present. The results are compatible with the model that predicts multiple DeaD-catalyzed structural transitions of the ribosome large subunit assembly.  相似文献   

12.
By primer extension inhibition assays, 70S ribosomes bound with higher affinity, or stability, than did 30S subunits to leaderless mRNAs containing AUG or GUG start codons. Addition of translation initiation factors affected ribosome binding to leaderless mRNAs. Our results suggest that translation of leaderless mRNAs might initiate through a pathway involving 70S ribosomes or 30S subunits lacking IF3.  相似文献   

13.
Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.  相似文献   

14.
In this study, we have examined the influence of initiation factors on translation initiation of leaderless mRNAs whose 5'-terminal residues are the A of the AUG initiating codon. A 1:1 ratio of initiation factors to ribosomes abolished ternary complex formation at the authentic start codon of different leaderless mRNAs. Supporting this observation, in vitro translation assays using limiting ribosome concentrations with competing leaderless λ c I and Escherichia coli ompA mRNAs, the latter containing a canonical ribosome binding site, revealed reduced cI synthesis relative to OmpA in the presence of added initiation factors. Using in vitro toeprinting and in vitro translation assays, we show that this effect can be attributed to IF3. Moreover, in vivo studies revealed that the translational efficiency of a leaderless reporter gene is decreased with increased IF3 levels. These studies are corroborated by the observed increased translational efficiency of a leaderless reporter construct in an infC mutant strain unable to discriminate against non-standard start codons. These results suggest that, in the absence of a leader or a Shine–Dalgarno sequence, the function(s) of IF3 limits stable 30S ternary complex formation.  相似文献   

15.
Sequence determinants and structural features of the RNA govern mRNA-ribosome interaction in bacteria. However, ribosomal recruitment to leaderless mRNAs, which start directly with the AUG start codon and do not bear a Shine-Dalgarno sequence like canonical mRNAs, does not appear to rely on 16S rRNA-mRNA interactions. Here, we have studied the effects of translation initiation factors IF2 and IF3 on 30S initiation at a 5'-terminal AUG and at a competing downstream canonical ribosome binding site. We show that IF2 affects the forward kinetics of 30S initiation complex formation at the 5'-terminal AUG as well as the stability of these complexes. Moreover, the IF2:IF3 molar ratio was found to play a decisive role in translation initiation of a leaderless mRNA both in vitro and in vivo indicating that the translational efficiency of an mRNA is not only intrinsically determined but can be altered depending on the availability of components of the translational machinery.  相似文献   

16.
Ribosomes from Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs. That is, they are able to translate mRNAs from a variety of sources in a manner independent of the "strength" of the Shine-Dalgarno region, in contrast to ribosomes from many Gram-positive bacteria, such as Bacillus subtilis, which show specific translation in only being able to translate other Gram-positive mRNA, or mRNAs that have "strong" Shine-Dalgarno regions. There is an evolutionary correlation between the translational specificity and the absence of a protein analogous to E. coli ribosomal protein S1. The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit of B. subtilis ribosomes. However, the addition of E. coli S1 alone to B. subtilis ribosome does not overcome their characteristic inability to translate mRNA from Gram-negative organisms. By contrast, the removal of S1 from E. coli ribosomes results in translational behavior similar to that shown by B. subtilis ribosomes in that the S1-depleted E. coli ribosomes can translate mRNA from Gram-positive sources in the absence of added S1, although addition of S1 stimulates further translation of such mRNAs by the E. coli ribosomes.  相似文献   

17.
The cold shock response of Escherichia coli is elicited by downshift of temperature from 37 degrees C to 15 degrees C and is characterized by induction of several cold shock proteins, including CsdA, during the acclimation phase. CsdA, a DEAD-box protein, has been proposed to participate in a variety of processes, such as ribosome biogenesis, mRNA decay, translation initiation, and gene regulation. It is not clear which of the functions of CsdA play a role in its essential cold shock function or whether all do, and so far no protein has been shown to complement its function in vivo. Our screening of an E. coli genomic library for an in vivo counterpart of CsdA that can compensate for its absence at low temperature revealed only one protein, RhlE, another DEAD-box RNA helicase. We also observed that although not detected in our genetic screening, two cold shock-inducible proteins, namely, CspA, an RNA chaperone, and RNase R, an exonuclease, can also complement the cold shock function of CsdA. Interestingly, the absence of CsdA and RNase R leads to increased sensitivity of the cells to even moderate temperature downshifts. The correlation between the helicase activity of CsdA and the stability of mRNAs of cold-inducible genes was shown using cspA mRNA, which was significantly stabilized in the DeltacsdA cells, an effect counteracted by overexpression of wild-type CsdA or RNase R but not by that of the helicase-deficient mutant of CsdA. These results suggest that the primary role of CsdA in cold acclimation of cells is in mRNA decay and that its helicase activity is pivotal for promoting degradation of mRNAs stabilized at low temperature.  相似文献   

18.
Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5′ untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA–protein or mRNA–ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5′ ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features.  相似文献   

19.
Leaderless mRNAs beginning with a 5'-terminal start codon occur in all biological systems. In this work, we have studied the comparative translational efficiency of leaderless and leadered mRNAs as a function of temperature by in vitro translation competition assays with Escherichia coli extracts. At low temperature (25 degrees C) leaderless mRNAs were found to be translated comparatively better than mRNAs containing an internal canonical ribosome binding site, whereas at high temperature (42 degrees C) the translational efficiency of canonical mRNAs is by far superior to that of leaderless mRNA. The inverse correlation between temperature and translational efficiency characteristic for the two mRNA classes was attributed to structural features of the mRNA(s) and to the reduced stability of the translation initiation complex formed at a 5'-terminal start codon at elevated temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号