首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GADD34 is one of a subset of proteins induced after DNA damage or cell growth arrest. To examine the function of GADD34, we used the yeast two-hybrid system to clone the protein that interacts with murine GADD34. We utilized as bait the partial product of GADD34 cDNA including the PEST region and the gamma(1)34.5. One cDNA clone was almost the same as MuRED, which encodes an acidic-basic dipeptide repeat; we named it G34BP. The interaction between GADD34 and G34BP was also confirmed in the NIH3T3 cells by in vivo two-hybrid analysis. For the binding of two proteins, the PEST region was important, and the C-terminal of G34BP was necessary. G34BP was detected in all the mouse tissues examined. Although GADD34 was significantly elevated with methyl methanesulfonate treatment, G34BP expression was not induced. Overexpression of G34BP in the NIH3T3 cells inhibited the cell growth analyzed by WST1 assay.  相似文献   

2.
GADD34 is one of a subset of proteins induced after DNA damage or cell growth arrest. To examine the function of GADD34, we used the yeast two-hybrid system to clone the protein that interacts with the murine GADD34. One cDNA clone was the C-terminal part of KIF3A gene including the tail domain. The interaction between GADD34 and KIF3A was confirmed in the NIH3T3 cells by in vivo two-hybrid analysis. We could detect that GADD34 was induced with methyl methanesulfonate; however, the mRNA induction of KIF3A was not detected.  相似文献   

3.
4.
The growth arrest and DNA damage-inducible protein, GADD34, was identified by its interaction with human inhibitor 1 (I-1), a protein kinase A (PKA)-activated inhibitor of type 1 protein serine/threonine phosphatase (PP1), in a yeast two-hybrid screen of a human brain cDNA library. Recombinant GADD34 (amino acids 233 to 674) bound both PKA-phosphorylated and unphosphorylated I-1(1-171). Serial truncations mapped the C terminus of I-1 (amino acids 142 to 171) as essential for GADD34 binding. In contrast, PKA phosphorylation was required for PP1 binding and inhibition by the N-terminal I-1(1-80) fragment. Pulldowns of GADD34 proteins expressed in HEK293T cells showed that I-1 bound the central domain of GADD34 (amino acids 180 to 483). By comparison, affinity isolation of cellular GADD34/PP1 complexes showed that PP1 bound near the C terminus of GADD34 (amino acids 483 to 619), a region that shows sequence homology with the virulence factors ICP34.5 of herpes simplex virus and NL-S of avian sarcoma virus. While GADD34 inhibited PP1-catalyzed dephosphorylation of phosphorylase a, the GADD34-bound PP1 was an active eIF-2alpha phosphatase. In brain extracts from active ground squirrels, GADD34 bound both I-1 and PP1 and eIF-2alpha was largely dephosphorylated. In contrast, the I-1/GADD34 and PP1/GADD34 interactions were disrupted in brain from hibernating animals, in which eIF-2alpha was highly phosphorylated at serine-51 and protein synthesis was inhibited. These studies suggested that modification of the I-1/GADD34/PP1 signaling complex regulates the initiation of protein translation in mammalian tissues.  相似文献   

5.
6.
7.
8.
Translin is a single-stranded RNA- and DNA-binding protein, which has been highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. TRAX is a Translin paralog associated with Translin, which has coevolved with it. We generated structural models of the S. pombe Translin (spTranslin), based on the solved 3D structure of the human ortholog. Using several bioinformatics computation tools, we identified in the equatorial part of the protein a putative nucleic acids interaction surface, which includes many polar and positively charged residues, mostly arginines, surrounding a shallow cavity. Experimental verification of the bioinformatics predictions was obtained by assays of nucleic acids binding to amino acid substitution variants made in this region. Bioinformatics combined with yeast two-hybrid assays and proteomic analyses of deletion variants, also identified at the top of the spTranslin structure a region required for interaction with spTRAX, and for spTranslin dimerization. In addition, bioinformatics predicted the presence of a second protein-protein interaction site at the bottom of the spTranslin structure. Similar nucleic acid and protein interaction sites were also predicted for the human Translin. Thus, our results appear to generally apply to the Translin family of proteins, and are expected to contribute to a further elucidation of their functions.  相似文献   

9.
The human GADD34 (Growth Arrest and DNA Damage-inducible 34) is the product of an apoptosis- and DNA-damage-inducible gene. The C-terminus domain of GADD34 is highly homologous to HSV-1 gamma-1 34.5, HSV-2 and the African swine fever virus virulence-associated factor NL-S. Among these viral proteins, HSV-1 gamma 34.5 protein is known to prevent apoptosis of viral-infected cells. Because of the difficulty in expressing GADD34 protein or any of its fragments, including the C-terminus (amino acids 533-632) in E. coli, partially due to sub-optimal expression of eukaryotic codons in prokaryotic E. coli, we used a codon-optimized cloning scheme to construct the eukaryotic gene that codes for GADD34(533-632). We derived a novel PCR protocol to assemble 20 oligonucleotides into the synthetic GADD34(533-632) gene. The clear advantage of using this protocol is that the assembled gene is without the mutation and deletion that are usually of a major problem in constructing synthetic genes. The synthetic GADD34(533-632) gene was cloned, expressed, and purified in large quantity. We obtained approximately 50 mg of GADD34(533-632) protein per liter minimum-medium culture. To our knowledge, this is the first report of a large-scale production of the C-terminus of GADD34. The production and purification of GADD34(533-632) in large quantity are essential for structure determination as well as for understanding its interactions with other proteins such as phosphatase 1-alpha using NMR spectroscopy and other biophysical methods.  相似文献   

10.
GADD34, the product of a growth arrest and DNA damage-inducible gene, is expressed at low levels in unstressed cells. In response to stress, the cellular content of GADD34 protein increases and, on termination of stress, rapidly declines. We investigated the mechanisms that control GADD34 levels in human cells. GADD34 proteins containing either an internal FLAG or a C-terminal green fluorescent protein epitope were degraded at rates similar to endogenous GADD34. However, the addition of epitopes at the N terminus or deletion of N-terminal sequences stabilized GADD34. N-terminal peptides of GADD34, either alone or fused to heterologous proteins, exhibited rapid degradation similar to wild-type GADD34, thereby identifying an N-terminal degron. Deletion of internal PEST repeats had no impact on GADD34 stability but modulated the binding and activity of protein phosphatase 1. Proteasomal but not lysosomal inhibitors enhanced GADD34 stability and eukaryotic initiation factor 2α (eIF-2α) dephosphorylation, a finding consistent with GADD34's role in assembling an eIF-2α phosphatase. GADD34 was polyubiquitinated, and this modification enhanced its turnover in cells. A stabilized form of GADD34 promoted the accumulation and aggregation of the mutant cystic fibrosis transmembrane conductance regulator (CFTRΔF508), highlighting the physiological importance of GADD34 turnover in protein processing in the endoplasmic reticulum and the potential impact of prolonged GADD34 expression in human disease.  相似文献   

11.
12.
The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by ~50% and the poorly hydrolyzed GTP analog, GTPγS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBPGTP and TB-RBPGTP no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBPGTP will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBPGTP into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBPGTP in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.  相似文献   

13.
GADD34 is a protein that is induced by a variety of stressors, including DNA damage, heat shock, nutrient deprivation, energy depletion, and endoplasmic reticulum stress. Here, we demonstrated that GADD34 induced by vesicular stomatitis virus (VSV) infection suppressed viral replication in wild-type (WT) mouse embryo fibroblasts (MEFs), whereas replication was enhanced in GADD34-deficient (GADD34-KO) MEFs. Enhanced viral replication in GADD34-KO MEFs was reduced by retroviral gene rescue of GADD34. The level of VSV protein expression in GADD34-KO MEFs was significantly higher than that in WT MEFs. Neither phosphorylation of eIF2alpha nor cellular protein synthesis was correlated with viral replication in GADD34-KO MEFs. On the other hand, phosphorylation of S6 and 4EBP1, proteins downstream of mTOR, was suppressed by VSV infection in WT MEFs but not in GADD34-KO MEFs. GADD34 was able to associate with TSC1/2 and dephosphorylate TSC2 at Thr1462. VSV replication was higher in TSC2-null cells than in TSC2-expressing cells, and constitutively active Akt enhanced VSV replication. On the other hand, rapamycin, an mTOR inhibitor, significantly suppressed VSV replication in GADD34-KO MEFs. These findings demonstrate that GADD34 induced by VSV infection suppresses viral replication via mTOR pathway inhibition, indicating that cross talk between stress-inducible GADD34 and the mTOR signaling pathway plays a critical role in antiviral defense.  相似文献   

14.
Wound healing consists of sequential steps of tissue repair, and cell migration is particularly important. In order to analyze the potential function of growth arrest and DNA damage inducible protein 34 (GADD34) in tissue repair, we performed in vitro and in vivo wound healing experiments. In an in vitro scratch assay, GADD34 knockout (KO) mouse embryonic fibroblasts (MEFs) had higher migration rates than did wild type (WT) MEFs. Furthermore, the rate of wound closure was faster in GADD34 KO MEFs than in WT MEFs. Using in vivo punch biopsy assays, GADD34 KO mice had accelerated wound healing compared to WT mice. WT mice expressed higher amounts of myosin IIA in migrating macrophages and myofibroblasts than did GADD34 KO mice. These results indicate that GADD34 negatively regulates cell migration in wound healing via expression of myosin IIA.  相似文献   

15.
The main role of growth arrest and DNA damage-inducible (GADD) genes is to block proliferation at G1 and G2 checkpoints in response to DNA damage. The goal of this study was to examine the expression of GADD genes in primary melanomas with respect to prognosis. GADD34 was found in 73% of the primary melanomas investigated. GADD45 and GADD153 were positive in 60% and 80% of primary melanomas, respectively. Cox regression demonstrated that only GADD153 had any independent prognostic impact. We therefore decided to establish a PCR assay for detection of GADD153 in paraffin-embedded tissue. GADD153 deletion was found in 3/26 melanomas. None of the 3 cases with GADD153 deletion showed any expression of GADD153. Sequencing analysis detected polymorphism T-C at amino acid position 10 in 6/23 melanomas. In 6 cases with GADD153 polymorphism, GADD153 expression was found in 2 melanomas with a maximum GADD153 index of 10%. We postulate that the GADD gene family plays an important role in melanoma progression.  相似文献   

16.
GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHO-K1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of the wild-type GADD34 protein in CHO-K1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin-dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild-type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells.  相似文献   

17.
The growth arrest and DNA damage-inducible protein, GADD34, associates with protein phosphatase 1 (PP1) and promotes in vitro dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2, (eIF-2 alpha). In this report, we show that the expression of human GADD34 in cultured cells reversed eIF-2 alpha phosphorylation induced by thapsigargin and tunicamycin, agents that promote protein unfolding in the endoplasmic reticulum (ER). GADD34 expression also reversed eIF-2 alpha phosphorylation induced by okadaic acid but not that induced by another phosphatase inhibitor, calyculin A (CA), which is a result consistent with PP1 being a component of the GADD34-assembled eIF-2 alpha phosphatase. Structure-function studies identified a bipartite C-terminal domain in GADD34 that encompassed a canonical PP1-binding motif, KVRF, and a novel RARA sequence, both of which were required for PP1 binding. N-terminal deletions of GADD34 established that while PP1 binding was necessary, it was not sufficient to promote eIF-2 alpha dephosphorylation in cells. Imaging of green fluorescent protein (GFP)-GADD34 proteins showed that the N-terminal 180 residues directed the localization of GADD34 at the ER and that GADD34 targeted the alpha isoform of PP1 to the ER. These data provide new insights into the mode of action of GADD34 in assembling an ER-associated eIF-2 alpha phosphatase that regulates protein translation in mammalian cells.  相似文献   

18.
Saturated fatty acids like palmitate induce endoplasmic reticulum (ER) stress in pancreatic beta‐cells, an event linked to apoptotic loss of β‐cells in type 2 diabetes. Sustained activation of the ER stress response leads to expression of growth arrest and DNA damage‐inducible protein 34 (GADD34), a regulatory subunit of protein phosphatase 1. In the present study, we have used small interfering RNA in order to knockdown GADD34 expression in insulin‐producing MIN6 cells prior to induction of ER stress by palmitate and evaluated its consequences on RNA‐activated protein kinase‐like ER‐localized eIF2alpha kinase (PERK) signalling and apoptosis. Salubrinal, a specific inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, was used as a comparison. Salubrinal treatment augmented palmitate‐induced ER stress and increased GADD34 levels. Both GADD34 knockdown and salubrinal treatment potentiated the cytotoxic effects of palmitate as evidenced by increased DNA fragmentation and activation of caspase 3, with the fundamental difference that the former did not involve enhanced levels of GADD34. The data from this study suggest that sustained activation of PERK signalling and eIF2α phosphorylation sensitizes insulin‐producing MIN6 cells to lipoapoptosis independently of GADD34 expression levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Claussen M  Koch R  Jin ZY  Suter B 《Genetics》2006,174(3):1337-1347
The vertebrate RNA and ssDNA-binding protein Translin has been suggested to function in a variety of cellular processes, including DNA damage response, RNA transport, and translational control. The Translin-associated factor X (Trax) interacts with Translin, and Trax protein stability depends on the presence of Translin. To determine the function of the Drosophila Translin and Trax, we generated a translin null mutant and isolated a trax nonsense mutation. translin and trax single and double mutants are viable, fertile, and phenotypically normal. Meiotic recombination rates and chromosome segregation are also not affected in translin and trax mutants. In addition, we found no evidence for an increased sensitivity for DNA double-strand damage in embryos and developing larvae. Together with the lack of evidence for their involvement in DNA double-strand break checkpoints, this argues against a critical role for Translin and Trax in sensing or repairing such DNA damage. However, Drosophila translin is essential for stabilizing the Translin interaction partner Trax, a function that is surprisingly conserved throughout evolution. Conversely, trax is not essential for Translin stability as trax mutants exhibit normal levels of Translin protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号