首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abiotic stresses are the key factors which negatively influence plant development and productivity and are the main cause of extensive agricultural production losses worldwide. Brassica napus is an oilseed crop of global economic significance and major contributor to the total oilseed production, quite often encounters abiotic stresses, resulting in reduced agricultural productivity. Hence, there is an immediate need being felt to raise B. napus cultivars which would be more suitable for various abiotic stress conditions presently and in the years to come. Biotechnology and molecular plant breeding has emerged as an important tool for molecular understanding of plant response to various abiotic stresses. Currently, various stress-responsive genes and mechanisms have been identified and functionally characterized in model plant Arabidopsis and other major crop plants such as Oryza sativa and Zea mays. However, very inadequate success has been achieved in this direction in a major oilseed crop such as B. napus. In this review, we present the latest methods and approaches of studying abiotic stress in B. napus. In this review, we describe the genes functioning as markers for crop breeding and discuss the recent progress and advances in genome editing by break through CRISPR/Cas9 multigene–multiplex approaches for developing multiple abiotic stress tolerance with our on-going research as a scheme. We also throw some light on molecular genetics, plant breeding and abiotic stress biotechnology of B. napus which offer a new prospective on the research directions for the practical plant breeding and functional genomics of B. napus in response to different abiotic stress conditions.  相似文献   

2.
3.
4.
Insertions/deletions (INDELs), a type of abundant length polymorphisms in the plant genomes, combine the characteristics of both simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNP), and thus can be developed as desired molecular markers for genetic studies and crop breeding. There has been no large-scale characterization of INDELs variations in Brassica napus yet. In this study, we identified a total of 538,691 INDELs in size range of 1–10 bp by aligning whole-genome re-sequencing data of 23 B. napus inbred lines (ILs) to the B. napus genome sequence of ‘Darmor-bzh.’ Of these, 104,190 INDELs were uniquely mapped on the pseudochromosomes of the reference genome. A set of 595 unique INDELs of 2–5 bp in length was selected for experimental validation in the 23 ILs. Of these INDELs, 530 (89.01 %) produced a single PCR product and were single locus. A total of 523 (87.9 %) INDELs were found polymorphic among the 23 ILs. A genetic linkage map containing 108 single-locus INDELs and 89 anchor SSR markers was constructed using 188 recombinant ILs. The majority of INDELs markers on the linkage map showed consistency with the pseudochromosomes of the B. napus cultivar ‘Darmor-bzh.’ The INDELs variations and markers reported here will be valuable resources in future for genetic studies and molecular breeding in oilseed rape.  相似文献   

5.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

6.
A high-density genetic map, an essential tool for comparative genomic studies and quantitative trait locus fine mapping, can also facilitate genome sequence assembly. The sequence-based marker technology known as restriction site-associated DNA (RAD) enables synchronous, single nucleotide polymorphism marker discovery, and genotyping using massively parallel sequencing. We constructed a high-density linkage map for carnation (Dianthus caryophyllus L.) based on simple sequence repeat (SSR) markers in combination with RAD markers developed by double-digest RAD sequencing (ddRAD-seq). A total of 2404 (285 SSR and 2119 RAD) markers could be assigned to 15 linkage groups spanning 971.5 cM, with an average marker interval of 0.4 cM. The total length of scaffolds with identified map positions was 95.6 Mb, which is equivalent to 15.4 % of the estimated genome size. The generated map is the first SSR and RAD marker-based high-density linkage map reported for carnation. The ddRAD-seq pipeline developed in this study should also help accelerate genetic and genomics analyses and molecular breeding of carnation and other non-model crops.  相似文献   

7.

Key message

A major QTL for multi-inflorescence was mapped to a 27.18-kb region on A05 in Brassica napus by integrating QTL mapping, microarray analysis and whole-genome sequencing.

Abstract

Multi-inflorescence is a desirable trait for the genetic improvement of rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait is not well understood. In the present study, a doubled haploid (DH) population derived from a cross between single- and multi-inflorescence lines was investigated for the penetrance of multi-inflorescence across 3 years and genotyped with 257 simple sequence repeat and sequence-related amplified polymorphism loci. A major quantitative trait locus (QTL) for penetrance of multi-inflorescence was mapped to a 9.31-Mb region on chromosome A05, explaining 45.81% of phenotypic variance on average. Subsequently, 13 single-inflorescence and 15 multi-inflorescence DH lines were genotyped with the Brassica microarray, and the QTL interval of multi-inflorescence was narrowed to a 0.74-Mb region with 37 successive single nucleotide polymorphisms between single- and multi-inflorescence groups. A 27.18-kb QTL interval was detected by screening 420 recessive F2 individuals with genome-specific markers. These results will be valuable for gene cloning and molecular breeding of multi-inflorescence in rapeseed.
  相似文献   

8.
Earliness of flowering and maturity and high seed yield are important objectives of breeding spring Brassica napus canola. Previously, we have introgressed earliness of flowering from Brassica oleracea into spring B. napus canola through interspecific crossing between these two species. In this paper, we report quantitative trait locus (QTL) mapping of days to flower and seed yield by use of publicly available markers and markers designed based on flowering time genes and a doubled haploid population, derived from crossing of the spring canola parent and an early flowering line developed from a B. napus × B. oleracea cross, tested in nine field trials for over 5 years. Five genomic regions associated with days to flower were identified on C1, C2, C3, and C6 of which the single QTL of C1 was detected in all trials; in all cases, the allele introgressed from B. oleracea reduced the number of days to flower. BLASTn search in the Brassica genomes located the physical position of the QTL markers and identified putative flowering time genes in these regions. In the case of seed yield, ten QTL from eight linkage groups were detected; however, none could be consistently detected in all trials. The QTL region of C1 associated with days to flower did not show significant association with seed yield in more than 80% of the field trials; however, in a single trial, the allele introgressed from B. oleracea exerted a negative effect on seed yield. Thus, the genomic regions and molecular markers identified in this research could potentially be used in breeding for the development of early flowering B. napus canola cultivars without affecting seed yield in a majority of the environments.  相似文献   

9.
Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust has long been a major disease impacting sugarcane production worldwide. Resistance resource and markers linked to resistance are valuable tools for disease resistance improvement. An F1 segregating population derived from a cross between two hybrid sugarcane clones, brown rust-susceptible CP95-1039 and brown rust-resistant CP88-1762, were genotyped using genotyping by sequencing approach and also phenotyped in a replicated field trial. Single nucleotide polymorphism (SNP) and presence/absence markers were called with seven different pipelines to maximize reliable marker identification. High-density maps were constructed for both parental clones with a total map length of 4224.4 cM, and a marker density of one marker per 1.7 cM for CP95-1039, and a total map length of 4373.2 cM, and one marker per 2.0 cM for CP88-1762. Among the seven SNP callers, Tassel and Genome Analysis ToolKit performed better than other callers in single-dose SNP detection and contribution to genetic maps. Two major quantitative trait loci (QTL) controlling brown rust resistance were identified, which can explain 21 and 30% of the phenotypic variation, respectively. The genetic maps generated here will improve our understanding of sugarcane’s complex genome structure and discovery of underlying sequence variations controlling agronomic traits. The putative QTL controlling brown rust resistance can effectively be utilized in sugarcane breeding programs to expedite the selection process of brown rust resistance after validation.  相似文献   

10.

Key message

An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence.

Abstract

Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
  相似文献   

11.
12.
Sesame (Sesamum indicum L. syn. Sesamum orientale L.) is considered to be the first oil seed crop known to man. Despite its versatile use as an oil seed and a leafy vegetable, sesame is a neglected crop and has not been a subject of molecular genetic research until the last decade. There is thus limited knowledge regarding genome-specific molecular markers that are indispensible for germplasm enhancement, gene identification, and marker-assisted breeding in sesame. In this study, we employed a genotyping by sequencing (GBS) approach to a sesame recombinant inbred line (RIL) population for high-throughput single nucleotide polymorphism (SNP) identification and genotyping. A total of 15,521 SNPs were identified with 14,786 SNPs (95.26 %) located along sesame genome assembly pseudomolecules. By incorporating sesame-specific simple sequence repeat (SSR) markers developed in our previous work, 230.73 megabases (99 %) of sequence from the genome assembly were saturated with markers. This large number of markers will be available for sesame geneticists as a resource for candidate polymorphisms located along the physical chromosomes of sesame. Defining SNP loci in genome assembly sequences provides the flexibility to utilize any genotyping strategy to survey any sesame population. SNPs selected through a high stringency filtering protocol (770 SNPs) for improved map accuracy were used in conjunction with SSR markers (50 SSRs) in linkage analysis, resulting in 13 linkage groups that encompass a total genetic distance of 914 cM with 432 markers (420 SNPs, 12 SSRs). The genetic linkage map constitutes the basis for future work that will involve quantitative trait locus (QTL) analyses of metabolic and agronomic traits in the segregating RIL population.  相似文献   

13.
Alien introgressions into crop plants rely on phenotypic evaluation. Employing molecular markers could greatly accelerate this and help discover new alleles/QTLs. We report here a new strategy to develop markers for tracking introgression using genome survey sequence. We demonstrate this using an advanced backcross population of Brassica juncea involving the wild species Diplotaxis erucoides. To develop D. erucoides-specific markers, 72 million single end reads were obtained using Ion-Torrent platform. Quality reads (67.6 million) were checked against Brassica database and the redundant reads were eliminated. De novo assembly of the remaining 14.6 million reads gave 3895 contigs (> 1 kb), which were used to design 101 donor-specific (DS) STS markers. Of these, 89 markers showed polymorphism between D. erucoides and B. juncea. Genotyping of 90 randomly picked plants with 31 donor-specific STS markers detected 22 plants containing 17 markers. Alien introgression was also detected in eight of the 22 lines displaying phenotypes deviating from B. juncea parent. The marker DSSTS 70 was found in six of the nine lines showing glossy leaf suggesting its association with the trait. This is the first study demonstrating the use of molecular markers for implementing reverse genetics approach for alien introgression into crop plants.  相似文献   

14.
Capsicum baccatum L., one of five domesticated species of Capsicum, is a valuable species in chili pepper breeding. In particular, it is a source of disease resistance against anthracnose and powdery mildew. Genetic maps and molecular markers are important to improve the efficiency of crop breeding programs. Recently, using genetic maps several researchers have identified quantitative trait loci (QTLs) for important horticultural traits and have cloned genes of interest. In this study, we constructed a genetic map of C. baccatum in an intraspecific population from a cross between ‘Golden-aji’ and ‘PI594137.’ A total of 395 high-resolution melting markers were developed based on single-nucleotide polymorphisms identified by comparing genome sequences generated through next-generation resequencing of the parents, ‘Golden-aji’ and ‘PI594137.’ The genetic linkage map contained 12 linkage groups, covered a total distance of 1056.2 cM, and had an average distance of 2.67 cM between markers. In addition, the final map was compared to the reference physical map of C. annuum ‘CM334.’ Interestingly, two major reciprocal translocations between chromosomes 3 and 5 and between chromosomes 3 and 9 were found, suggesting that these translocations might act as a genetic barrier between C. annuum and C. baccatum. Translocations between chromosomes 1 and 8 were also observed, as were previously reported in C. chinense, C. frutescens, and wild C. annuum. The synteny of other chromosomes was maintained, on the whole, except for several small inversions. The information on this genetic map will be helpful to analyze QTLs for important traits such as anthracnose resistance in C. baccatum and to study the causes of genetic barriers between C. annuum and C. baccatum.  相似文献   

15.
Days to flowering (DTF) is an important trait impacting cultivar performance in oilseed rape (Brassica napus L.), but the interaction of all loci controlling this trait in spring-type oilseed rape is not fully understood. We identified quantitative trait loci (QTL) for variation in DTF in a doubled haploid (DH) population from the Qinghai–Tibet Plateau that includes 217 lines derived from a cross between spring-type oilseed rape (B. napus L.) line No. 5246 and line No. 4512, the latter of which is responsive to the effective accumulated temperature (EAT). A linkage map was constructed for the DH population, using 202 SSR and 293 AFLP markers. At least 22 DTF QTL were found in multiple environments. Four major QTL were located on linkage groups A7, C2, C8 and C8. Among these QTL, cqDTFA7a and cqDTFC2a were identified in five environments and individually explained 10.4 and 23.0 % of the trait variation, respectively. cqDTFC8, a major QTL observed in spring environments, and a unique winter environment QTL, qDTFC8-3, were identified; these QTL explained 10.0 and 46.5 % of the phenotypic variation, respectively. Minor QTL (for example, cqDTFC2c) and epistatic interactions seemed evident in this population. Two closely linked SSR markers for cqDTFA7a and cqDTFC8 were developed (G1803 and S034). BnAP1, a B. napus gene with homology to Arabidopsis thaliana that was identified as a cqDTFA7a candidate gene, played a major role in this study. The allelic effects of the major and minor QTL on DTF were further validated in the DH population and in 93 breeding genotypes.  相似文献   

16.
In recent past, genomic tools especially molecular markers have been extensively used for understanding genome dynamics as well for applied aspects in crop breeding. Several new genomics technologies such as next generation sequencing (NGS), high-throughput marker genotyping, -omics technologies have emerged as powerful tools for understanding genome variation in crop species at DNA, RNA as well as protein level. These technologies promise to provide an insight into the way gene(s) are expressed and regulated in cell and to unveil metabolic pathways involved in trait(s) of interest for breeders not only in model-/major- but even for under-resourced crop species which were once considered “orphan” crops. In parallel, genetic variation for a species present not only in cultivated genepool but even in landraces and wild species can be harnessed by using new genetic approaches such as advanced-backcross QTL (AB-QTL) analysis, introgression libraries (ILs), multi-parent advanced generation intercross (MAGIC) population and association genetics. The gene(s) or genomic regions, responsible for trait(s) of interest, identified either through conventional linkage mapping or above mentioned approaches can be introgressed or pyramided to develop superior genotypes through molecular breeding approaches such as marker-assisted back crossing (MABC), marker assisted recurrent selection (MARS) and genome wide selection (GWS). This article provides an overview on some recent genomic tools and novel genetic and breeding approaches as mentioned above with a final aim of crop improvement.  相似文献   

17.
Bipolaris sorokiniana (Sacc.) Shoemaker is a hemi-biotrophic fungal pathogen, which is an anamorph (teleomorph Cochlibolus sativus). It causes spot blotch, root rot and leaf spot diseases in a number of cereals including wheat, barley and other small grain cereals. In the genomics era, the fungus has been subjected to a variety of studies using molecular approaches. Correct chromosome number was determined and molecular karyotypes were prepared using contour-clamped homogeneous electric field. Molecular maps were prepared using markers like RFLPs, SSRs, RAPDs and SNPs. For this purpose, segregating progenies derived from crosses between diverse isolates of the pathogen were used. Whole genome sequencing (WGS) data was collected not only for B. sorokiniana isolates, but also for several species of Cochliobolus. Genes involved in secondary metabolism and virulence were identified from genome sequences. The WGS data has also been utilized for comparative genomics giving useful information about evolutionary trends. A brief account of this information is presented in this review.  相似文献   

18.
燕麦具有较高的营养价值和保健功能,是一种可用于均衡营养、科学饮食的健康食品,正逐渐受到人们的青睐和认可.基因组学研究有助于燕麦重要农艺性状的定位和克隆,对开发利用燕麦优质种质资源具有重要意义.本文从以下几个方面对燕麦基因组学研究进展进行综述:(1)燕麦属基因组类型、大小及染色体倍性研究;(2)基于多种分子标记手段构建燕...  相似文献   

19.
20.
Kiwifruit is a perennial horticultural crop species of the Actinidiaceae family and has high nutritional value. For a species with a long generation time, traditional breeding and genetic improvement is predicted to take more than 20 years to obtain superior cultivars. Thus, marker-assisted selection (MAS) should be used to accelerate the breeding process. Development of a genetic linkage map and molecular markers are pre-requisites for MAS of crop species. Here, we report a genome-wide SNP-based genetic map of kiwifruit by analysing next-generation restriction-site-associated DNA sequencing (RADseq) reads. To construct a genetic linkage map, a 102 F1 line mapping population of Actinidia chinensis (2n = 58) was derived by combining parents that had contrasting phenotypic traits. The maternal map contained 4112 SNP loci and spanned a distance of 3821 cM, with an average adjacent-marker interval length of 0.929 cM. The map length of the 29 linkage groups ranged from 78.3 to 169.9 cM, with an average length of 131.8 cM. High levels of collinearity between the 29 genetic maps with the kiwifruit reference genome were found. The genetic map developed in this study can serve as an important platform to improve kiwifruit research, including anchoring unmapped scaffolds of the kiwifruit genome sequence and mapping QTLs (quantitative trait loci) that control economically important traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号