首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Excessive amounts of oxy-functional groups in unprocessed bio-oil vitiate its quality as fuel; therefore, it has to be channelized to upgrading processes, and catalytic hydrodeoxygenation is one of the most suitable routes for the upgrading of crude bio-oil. In this computational work, catalytic hydrodeoxygenation (HDO) of guaiacol, which is an important phenolic compound of crude bio-oil, has been carried out using density functional theory (DFT) over a Pd(111) catalyst. The Pd(111) catalyst surface does not endorse direct eliminations of functional groups of guaiacol; however, it is found to perform excellently in stepwise dehydrogenation reactions of oxy-functionals of guaiacol according to present DFT results. The catechol product, formed through dehydrogenation of the methoxy group, followed by elimination of CH2 and association of the hydrogen atom, has been identified as one of the major products. The overall reaction rate is controlled by scission of CH2 from 2-methylene-oxy-phenol with an activation energy demand of 23.06 kcal mol–1. Further, the kinetic analysis of each reaction step involved in HDO of guaiacol over the Pd(111) catalyst surface has also been carried out at atmospheric pressure and at a wide range of temperatures from 473 to 673 K, with temperature intervals of 50 K. In the kinetic analysis part, various kinetic parameters, such as forward and reverse reaction rate constants, Arrhenius constants, and equilibrium rate constants, are reported. The kinetic modeling of the dominating reaction steps has revealed that even a lower temperature of 473 K provides a favorable reaction environment; and the temperature increment further improves the reaction favorability.  相似文献   

2.
The intermediate metabolites of benzene transformation by a microaerophilic bacterial consortium, adapted to degrade gasoline and benzene at low concentrations of dissolved oxygen (<1 mg l-1), were identified. The examined range of initial DO concentration, 0.05 to 1 mg l-1, was considerably lower than the previously reported values believed to be necessary to initiate benzene biodegradation. An extensive transformation of benzene, higher than the theoretical predictions for its aerobic oxidation, was observed. Phenol was identified as the most stable and the major intermediate metabolite which was subsequently transformed into catechol and benzoate. The use of 13C-labeled compounds identified benzene as the source of phenol, and phenol as the source of catechol and benzoate, suggesting the involvement of a monooxygenase enzymatic system in biodegradation of benzene at low DO concentrations. A metabolic sequence was proposed to describe the simultaneous detection of catechol and benzoate during the microaerophilic transformation of benzene. The results of this work demonstrate that it is possible to transform benzene, a highly carcinogenic hydrocarbon and a major contaminant of groundwater, to more easily biodegradable compounds in the presence of very small amounts of oxygen.  相似文献   

3.
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.  相似文献   

4.
Ko CH  Chen SS 《Bioresource technology》2008,99(7):2293-2298
Guaiacol, catechol, m-cresol are common phenolic compounds presented in various industrial effluents but difficult to be removed by conventional wastewater treatment schemes. To elucidate mechanisms of enhanced membrane removal by laccase polymerization, different MF and UF membranes were employed in a cross-flow module for phenol concentration of 5mM. With 2.98 IU/l of laccase applied at room temperature, guaiacol, catechol and m-cresol were polymerized to products of averaged molecular weight of 9600, 8350 and 5400 Da (Dalton), respectively. Methoxy and hydroxyl-substituted phenols (guaiacol and catechol) were polymerized better than methyl-substituted phenol (m-cresol) due to more stable free-radical containing intermediate structure induced by oxygen-containing methoxy and hydroxyl functional groups. Removal efficiencies for the un-reacted phenols were dependent on the molecular sizes (length and width), but were dependent on the molecular weight for the polymerized phenolic compounds. Flux was declined initially but reached steady state after 180 min of filtration, indicating these MF/UF membranes can be used for removal of these polymerized phenols without significant fouling. In addition, pretreatments by the inactivated laccase only caused further flux reduction without additional removal of phenols.  相似文献   

5.
Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions.  相似文献   

6.
Phenol hydroxylase gene engineered microorganism (PHIND) was used to synthesize catechols from benzene and toluene by successive hydroxylation reaction. HPLC-MS and 1H NMR analysis proved that the products of biotransformation were the corresponding catechols via the intermediate production of phenols. It was indicated that the main products of toluene oxidation were o-cresol and p-cresol. 3-Methylcatechol was the predominant product for m-cresol biotransformation. Formation rate of catechol (25 μM/min/g cell dry weight) was 1.43-fold higher than that of methylcatechols. It was suggested that phenol hydroxylase could be successfully used to transform both benzene and toluene to catechols by successive hydroxylation.  相似文献   

7.
Wild type, mutant, and recombinant bacterial strains capable of oxidizing aromatic hydrocarbons were screened for their ability to oxidize anisole (methoxybenzene) and phenetole (ethoxybenzene). Toluene-induced cells ofPseudomonas putida F39/D transformed anisole to a compound tentatively identified ascis-1,2-dihydroxy-3-methoxyclohexa-3,5-diene (anisole-2,3-dihydrodiol), 2-methoxyphenol, catechol, and trace amounts of phenol while phenetole was converted primarily tocis-1,2-dihydroxy-3-ethoxycyclohexa-3,5-diene (phenetole-2,3-dihydrodiol) and 2-ethoxyphenol. Induced cells ofPseudomonas sp. NCIB 9816/11 andBeijerinckia sp. B8/36 transformed anisole to phenol, and phenetole to phenol and ethenyloxybenzene. Toluene-induced cells ofP. putida BG1 converted anisole to phenol but did not oxidize phenetole. In contrast, toluene-induced cells ofP. mendocina KR1, which oxidize toluene via monooxygenation at thepara position, transformed anisole to 4-methoxyphenol, and phenetole to 2-, 3- and 4-ethoxyphenol. The involvement of toluene and naphthalene dioxygenases in the reactions catalyzed by strains F39/D and NCIB 9816/11, respectively, was confirmed with recombinantE. coli strains expressing the cloned dioxygenase genes. The results show that the oxygenases from differentPseudomonas strains oxidize anisole and phenetole to different hydroxylated products.  相似文献   

8.
Hydroquinone, a metabolite of benzene, is converted by human myeloperoxidase to 1,4-benzoquinone, a highly toxic species. This conversion is stimulated by phenol, another metabolite of benzene. Here we report that peroxidase-dependent hydroquinone metabolism is also stimulated by catechol, resorcinol, o-cresol, m-cresol, p-cresol, guaiacol, histidine, and imidazole. In order to gain insights into the mechanisms of this stimulation, we have compared the kinetics of human myeloperoxidase-dependent phenol, hydroquinone, and catechol metabolism. The specificity (Vmax/Km) of hydroquinone for myeloperoxidase was found to be 5-fold greater than that of catechol and 16-fold greater than that of phenol. These specificities for myeloperoxidase-dependent metabolism inversely correlated with the respective one-electron oxidation potentials of hydroquinone, catechol, and phenol and suggested that phenol- and catechol-induced stimulation of myeloperoxidase-dependent hydroquinone metabolism cannot simply be explained by interaction of hydroquinone with stimulant-derived radicals. Phenol (100 microM), catechol (20 microM), and imidazole (50 mM) did, however, all increase the specificity (Vmax/Km) of hydroquinone for myeloperoxidase, indicating that these three compounds may be stimulating hydroquinone metabolism by a common mechanism. Interestingly, the stimulation of peroxidase-dependent hydroquinone metabolism by other phenolic compounds was pH-dependent, with the stimulating effect being higher under alkaline conditions. These results therefore suggest that the interaction of phenolic compounds, presumably by hydrogen-bonding, with the activity limiting distal amino acid residue(s) or with the ferryl oxygen of peroxidase may be an important contributing factor in the enhanced myeloperoxidase-dependent metabolism of hydroquinone in the presence of other phenolic compounds.  相似文献   

9.
From soil samples of different origin (field, grassland and forest soils) small numbers ofNocardin andPseudomonas spec., able to utilize benzene and phenol could be isolated. Organisms which could only utilize phenol and phenolcarboxylic acids were more numerous and consisted mainly ofArthrobacter spec. It was tested to what extent these organisms could also utilize chlorinated aromatic and cyclohexane derivatives. For the degradation studies the bacteria were precultivated on benzene or p-hydroxybenzoic acid and then the compounds used were added. These compounds were labeled by14C and their degradation rates determined by measuring the14CO2 release.Pseudomonas andNocardia spec. precultivated on benzene could also degrade the chlorinated derivatives of benzene and phenol. The monochlorinated derivates were degraded more easily than the di- and trichlorinated derivates. The chlorinated benzenes, especially in higher concentrations, were less degraded than the chlorinated phenols, but with lower concentrations their degradation rates were about similar. This was due to a higher toxicity of the benzenes. The phenol utilizingArthrobacter spec. were only able to degrade phenol and the chlorinated phenols. Benzoic and m-chlorobenzoic acid were degraded to CO2 by thePseudomonas andNocardia spec. only. The benzene utilizing pseudomonads released more CO2 from γ-pentachlorocyclohexane than from γ-hexachlorocyclohexane, but none from cyclehexane. Upon precultivation of benzene utilizing pseudomonads in glucose, the aromatic compounds were also degraded, but especially the chlorinated derivatives to a lower extent. In comparison with these soil organisms in pure culture, experiments with soil samples showed a degradation of all compounds which were used by the isolated organisms after variable induction periods. Cyclohexane was degraded slowly to CO2 by the mixed soil flora in contrast to the benzene or phenol utilizing pure cultures.  相似文献   

10.
Abstract

Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn2+-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20–515.98?μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.  相似文献   

11.
Burkholderia sp. AA1 isolated from a diesel fuel-contaminated site degraded toluene, as well as a wide range of alkanes from decane (C8) to pentacosane (C25) as sole carbon and energy sources. This strain also utilized m-toluate, p-toluate, o-toluate, and m-cresol as sole carbon and energy sources. Toluene- and toluate-grown cells showed catechol 2,3-dioxygenase activity and indole oxidation activity that is exhibited by some toluene oxygenation enzymes. The catechol 2,3-dioxygenase gene (catB) was cloned and sequenced. Its deduced amino acid sequence is analogous to the extradiol dioxygenases cloned from a variety of microorganisms. A DNA fragment containing the genes for the indole oxidation activity was cloned and sequenced. A seven-gene cluster designated as tbhABCDEFG was identified. Significant similarities were found with multicomponent monooxygenase systems for toluene, benzene and phenol from different bacterial strains. Journal of Industrial Microbiology & Biotechnology (2000) 25, 127–131. Received 28 July 1999/ Accepted in revised form 28 June 2000  相似文献   

12.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

13.
A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.  相似文献   

14.
Aspergillus fumigatus (ATCC 28282), a thermotolerant fungus, has been shown to be capable of growth on phenol as the sole carbon and energy source. During growth of the organism on phenol, catechol and hydroquinone accumulated transiently in the medium; cells grown on phenol oxidised these compounds without a lag period. Two different routes operating simultaneously, leading to different ring-fission substrates, are proposed for the metabolism of phenol. In one route, phenol undergoes ortho-hydroxylation to give catechol, which is then cleaved by an intradiol mechanism leading to 3-oxoadipate. In the other route, phenol is hydroxylated in the para-position to produce hydroquinone, which is then converted into 1,2,4-trihydroxybenzene for ring fission by ortho-cleavage to give maleylacetate. Cell-free extracts of phenol-grown mycelia were found to contain enzymic activities for the proposed steps. Two ring-fission dioxygenases, one active towards 1,2,4-trihydroxybenzene, but not catechol, and one active towards both ring-fission substrates, were separated by FPLC. Succinate-grown mycelia did not oxidise any of the intermediates until a clear lag period had elapsed and did not contain any of the enzymic activities for phenol metabolism.  相似文献   

15.
In this study quantum chemical calculations based on the density functional theory (DFT) have been carried out to examine the effects of methoxy substituent attached to a silicon atom on the reaction of silylative coupling of olefins. It has been shown, that substituted substrate undergoes the reaction according to the recently proposed insertion-rotation-elimination mechanism. During the rotation around C-C single bond additional stabilization by oxygen-ruthenium interaction was observed. Similarly to the (trimethylsilyl)ethene the rate determining step of the reaction is the insertion of the alkene into Ru-Si single bond. The substitution of SiMe3 by Si(OMe)3 decreases the energy span of the reaction by almost 3 kcal mol-1 that is from 21 kcal mol-1 to 18 kcal mol-1. The decrease of the energy barrier of the reaction seems to be the result of the increase of point charge differences between the Ru and Si atoms which increases electrostatic attraction between these atoms. Moreover, for Si(OMe)3 the rate-determining transition state is closer to the alkene interacting with the Ru centre side of the reaction.  相似文献   

16.
Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis   总被引:5,自引:0,他引:5  
A yeast strain isolated from soil by enrichment on phenol as major carbon source was identified as Candida tropicalis. Washed cell suspensions of this strain and cell-free preparations obtained from mechanically disrupted cells oxidized phenol via catechol and cis, cis-muconate. In addition to phenol and the three isomeric diphenols, a number of phenol derivatives, amongst them fluoro-, nitro- and short-chain alkyl-phenols, were oxidized by the organism. However, no significant oxygen uptake could be demonstrated in the presence of pyrogallol, phloroglucinol, the cresols, the m-and p-hydroxy-benzoates, methoxylated phenol derivatives, benzene or toluene. Cell-free preparations from the yeast strain exhibited activity of phenol hydroxylase and of catechol 1,2-oxygenase. Both enzymes appeared in the soluble cell fraction. Both exhibit broad substrate specificities. The relative specific activity of the ring-cleaving enzyme towards various substrates seems to be dependent on the phenolic inducer.  相似文献   

17.
Pseudomonas strain PH1 can utilize nitro-, chloro-, and aminophenols and was used in this study. The enzymes of two pathways, utilizing phenol and meta-aminophenol (MAP), were analyzed under different growth conditions. The enzymes responsible for phenol to catechol conversion followed by the ring cleavage enzyme for catechol, and also the enzymes responsible for MAP oxidation and hydroxylation of resorcinol, were studied. Enzyme and respirometric assays were carried out with cells harvested from log phase and stationary phase from medium with different carbon sources and nitrogen levels. It was observed that the first step for utilization of both the substrates requires the same physiological state of the cells, whereas, the subsequent step require different physiological states.  相似文献   

18.
O‐methyltransferases (OMT) are important enzymes that are responsible for the synthesis of many small molecules, which include lignin monomers, flavonoids, alkaloids, and aroma compounds. One such compound is guaiacol, a small volatile molecule with a smoky aroma that contributes to tomato flavor. Little information is known about the pathway and regulation of synthesis of guaiacol. One possible route for synthesis is via catechol methylation. We identified a tomato O‐methyltransferase (CTOMT1) with homology to a Nicotiana tabacum catechol OMT. CTOMT1 was cloned from Solanum lycopersicum cv. M82 and expressed in Escherichia coli. Recombinant CTOMT1 enzyme preferentially methylated catechol, producing guaiacol. To validate the in vivo function of CTOMT1, gene expression was either decreased or increased in transgenic S. lycopersicum plants. Knockdown of CTOMT1 resulted in significantly reduced fruit guaiacol emissions. CTOMT1 overexpression resulted in slightly increased fruit guaiacol emission, which suggested that catechol availability might limit guaiacol production. To test this hypothesis, wild type (WT) and CTOMT1 that overexpress tomato pericarp discs were supplied with exogenously applied catechol. Guaiacol production increased in both WT and transgenic fruit discs, although to a much greater extent in CTOMT1 overexpressing discs. Finally, we identified S. pennellii introgression lines with increased guaiacol content and higher expression of CTOMT1. These lines also showed a trend toward lower catechol levels. Taken together, we concluded that CTOMT1 is a catechol‐O‐methyltransferase that produces guaiacol in tomato fruit.  相似文献   

19.
Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 μM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 ± 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 ± 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 ± 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 ± 1, 3.1 ± 0.3, and 0.26 ± 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 ± 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 ± 0.07 and 1.5 ± 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 ± 0.8, 4.0 ± 0.6, and 2.4 ± 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 μM).  相似文献   

20.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号