首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12–18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.  相似文献   

2.
Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilm formation and biofilm‐related infections. Nitric oxide (NO), an important messenger molecule in biological systems, was previously identified as a signal for dispersal in biofilms of the model organism Pseudomonas aeruginosa. In the present study, the use of NO as an anti‐biofilm agent more broadly was assessed. Various NO donors, at concentrations estimated to generate NO levels in the picomolar and low nanomolar range, were tested on single‐species biofilms of relevant microorganisms and on multi‐species biofilms from water distribution and treatment systems. Nitric oxide‐induced dispersal was observed in all biofilms assessed, and the average reduction of total biofilm surface was 63%. Moreover, biofilms exposed to low doses of NO were more susceptible to antimicrobial treatments than untreated biofilms. For example, the efficacy of conventional chlorine treatments at removing multi‐species biofilms from water systems was increased by 20‐fold in biofilms treated with NO compared with untreated biofilms. These data suggest that combined treatments with NO may allow for novel and improved strategies to control biofilms and have widespread applications in many environmental, industrial and clinical settings.  相似文献   

3.
Carbon removal strategies have gained popularity in the mitigation of biofouling in water reuse processes, but current biofilm-monitoring practices based on organic-carbon concentrations may not provide an accurate representation of the in situ biofilm problem. This study evaluated a submerged microtiter plate assay for direct and rapid monitoring of biofilm formation by subjecting the plates to a continuous flow of either secondary effluent (SE) or biofilter-treated secondary effluent (BF). This method was very robust, based on a high correlation (R(2) = 0.92) between the biomass (given by the A(600) in the microtiter plate assay) and the biovolume (determined from independent biofilms developed on glass slides under identical conditions) measurements, and revealed that the biomasses in BF biofilms were consistently lower than those in SE biofilms. The influence of the organic-carbon content on the biofilm community composition and succession was further evaluated using molecular tools. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed a group of pioneer colonizers, possibly represented by Sphingomonadaceae and Caulobacter organisms, to be common in both SE and BF biofilms. However, differences in organic-carbon availabilities in the two water samples eventually led to the selection of distinct biofilm communities. Alphaproteobacterial populations were confirmed by fluorescence in situ hybridization to be enriched in SE biofilms, while Betaproteobacteria were dominant in BF biofilms. Cloning analyses further demonstrated that microorganisms adapted for survival under low-substrate conditions (e.g., Aquabacterium, Caulobacter, and Legionella) were preferentially selected in the BF biofilm, suggesting that carbon limitation strategies may not achieve adequate biofouling control in the long run.  相似文献   

4.
A study on biofilm formation was carried out using five methicillin-sensitive [MSSA] and five methicillin-resistant [MRSA] strains of S. aureus. In each group, there were four strains isolated from patients from Kinshasa (Democratic Republic of Congo, DRC) and one reference strain. All of the strains were hydrophobic. The adherence of the bacteria to an abiotic surface was studied with the Biofilm Ring Test (BFRT®) and the crystal violet staining method (CVSM). Both techniques showed that eight of the strains formed biofilms within 2–3 h. The extent of the biofilm formed by one strain could only be observed with the CVSM. Periodate prevented the formation of biofilms and, in separate experiments, destroyed the biofilm pre-formed by the MSSA reference, but not those pre-formed by the clinical strains. Proteinase K destroyed all pre-formed biofilms. Six of the strains were icaA+; the clinical MSSA strains were not. The results also indicated different mechanisms of biofilm development between MSSA and MRSA clinical strains. The BFRT® and the CVSM are complementary techniques to study the adhesion of bacteria and the development of biofilms.  相似文献   

5.
【目的】副溶血性弧菌是水产品中常见的食源性致病菌,生物被膜的形成对副溶血性弧菌的环境生存和传播至关重要。这项工作的目的是评估临床和环境中分离出的44株副溶血性弧菌菌株形成的生物被膜的结构多样性。【方法】该研究基于共聚焦激光扫描显微镜的高通量方法,使用与高分辨率成像兼容的96孔微量滴定板,结合结构分析软件ISA-2来研究生物被膜形成和结构,分析22株食品与22株临床来源的副溶血性弧菌菌株形成的生物被膜结构参数(生物体积、平均厚度、粗糙系数)。【结果】CLSM图像显示,44株副溶血性弧菌菌株在培养48h后能够形成3D结构,进一步比较分析了临床来源菌株与环境来源菌株形成的生物被膜结构异同,发现临床菌株生物被膜的变异系数比环境菌株生物被膜的变异系数小,且同时携带tdh和trh两种毒力因子的菌株生物被膜变异性最小。凝聚层次聚类分析结果显示,副溶血性弧菌生物被膜可以分为致密且表面光滑(39%)、斑驳且表面粗糙(27%)、疏松且表面坑洼(34%),临床菌株易形成致密且表面光滑和斑驳且表面粗糙的生物被膜,而环境菌株易形成致密且表面光滑和疏松且表面坑洼的生物被膜。【结论】该研究深入了解了副溶血性弧菌生物被膜结构差异性,为今后对临床和环境来源的副溶血性弧菌生物被膜采取不同的防控和清除措施提供了理论支撑。  相似文献   

6.
Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.  相似文献   

7.
Candida glabrata has emerged as the second most prevalent fungal pathogen and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms present a high tolerance to antifungal agents used in fungal infection treatment. The mechanisms of biofilm tolerance to antifungal agents remain poorly understood. Thus, the aim of this study was to evaluate the effects of fluconazole (FLU) on the formation and control of C. glabrata biofilms and its relation with the expression of genes encoding for ABC transporters, CDR1, SNQ2, and PDR1. For that, minimal inhibitory concentration values for seven C. glabrata strains were determined and the effect of FLU against C. glabrata biofilms was evaluated by total biomass quantification and viable cell enumeration. Matrices from biofilms were analyzed in terms of protein, carbohydrate and DNA content. ABC transporter gene expression was analyzed for quantitative real-time PCR. In addition to the high amounts of proteins and carbohydrates detected in the extracellular matrices in the presence of FLU, this work showed that the overexpression of efflux pumps is a possible mechanism of biofilm tolerance to FLU and this phenomenon alters the structure of C. glabrata biofilms by creating cell clusters.  相似文献   

8.
DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.  相似文献   

9.
Background: The human bacterial pathogen Helicobacter pylori forms biofilms. However, the constituents of the biofilm have not been extensively investigated. In this study, we analyzed the carbohydrate and protein components of biofilm formed by H. pylori strain ATCC 43504 (NCTC 11637). Materials and Methods: Development of H. pylori biofilm was analyzed using scanning electron microscopy (SEM) and quantified using crystal violet staining. The extracted extracellular polysaccharide (EPS) matrix was analyzed using GC‐MS and nuclear magnetic resonance (NMR) analyses. Proteomic profiles of biofilms were examined by SDS–PAGE while deletion mutants of upregulated biofilm proteins were constructed and characterized. Results: Formation of H. pylori biofilm is time dependent as shown by crystal violet staining assay and SEM. NMR reveals the prevalence of 1,4‐mannosyl linkages in both developing and mature biofilms. Proteomic analysis of the biofilm indicates the upregulation of neutrophil‐activating protein A (NapA) and several stress‐induced proteins. Interestingly, the isogenic mutant napA revealed a different biofilm phenotype that showed reduced aggregated colonial structure when compared to the wild type. Conclusions: This in vitro study shows that mannose‐related proteoglycans (proteomannans) are involved in the process of H. pylori biofilm formation while the presence of upregulated NapA in the biofilm implies the potency to increase adhesiveness of H. pylori biofilm. Being a complex matrix of proteins and carbohydrates, which are probably interdependent, the H. pylori biofilm could possibly offer a protective haven for the survival of this gastric bacterial pathogen in the extragastric environments.  相似文献   

10.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

11.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

12.
Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation. Various biofilm morphological parameters were quantified using Image Structure Analyzer software. Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0.000) influenced biofilm structure. In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell. In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies. Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells. The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters. The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms. Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies.  相似文献   

13.
Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation. Various biofilm morphological parameters were quantified using Image Structure Analyzer software. Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0.000) influenced biofilm structure. In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell. In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies. Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells. The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters. The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms. Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies.  相似文献   

14.
Summary Formation and activity of bacterial nitrifying biofilms play an important role in the closed seawater systems for shrimp cultivation. The structure of microbial biofilm on empty oyster shells, used as a biofilm carrier in biofiltration of aquacultural water, was studied using fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy. FISH was performed with specific oligonucleotide probes for Bacteria and ammonia-oxidizing Nitrosomonas spp. The bacterial cells were arranged within the biofilm as a layer of vertically elongated aggregates. Aggregates of ammonia-oxidizing bacteria were embedded within the matrix formed by other bacteria. Vertically elongated cell aggregates may be ecologically important in bacterial biofilms because they have a higher surface-to-volume ratio than that of laminated biofilms.  相似文献   

15.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

16.
doi: 10.1111/j.1741‐2358.2011.00485.x
Candida albicans biofilm formation on soft denture liners and efficacy of cleaning protocols Objective: The aim of this study was to investigate Candida albicans biofilm formation on denture liners and to analyse the efficacy of cleaning protocols. Material and methods: Specimens were prepared from four silicone‐based soft denture liners. After artificial ageing and surface free energy determination, specimens were incubated with saliva (2 h) and Candida albicans ATCC 10231 for either short‐ (2.5 h) or long‐term (24 h) biofilm formation. Adherent cells were determined either after incubation of specimens with Candida albicans or after treatment with different denture cleaning protocols. Statistical analysis was performed using one‐way anova and the Games–Howell test (α = 0.05). Results: For both short‐ and long‐term biofilm formation, similar amounts of Candida albicans cells were found on the surface of the different liners (p = 0.295 and 0.178, respectively). For both short‐ and long‐term biofilm formation, the highest cleaning efficacy was observed for sodium hypochlorite (NaOCl; p < 0.01). The efficacy of the chemical denture cleaner in removing long‐term Candida albicans biofilms was significantly lower than the efficacy of removal by brushing (p < 0.001). Conclusion: Different silicone‐based soft denture liners yield similar Candida albicans biofilm formation on their surface. The highest efficacy for the removal of Candida albicans biofilms was identified for NaOCl. Chemical denture cleaners appear to have rather low efficacy to remove mature Candida albicans biofilms.  相似文献   

17.
The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.  相似文献   

18.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

19.
All over the world, Microbial systems are used to clean soils, waters and air streams that have been contaminated with volatile organic compounds (VOC). Information about the structure and function of the microbes that metabolize these contaminants can be gained by studying these microbial systems. Here we describe the spatial patterns of respiratory activity in Pseudomonas putida 54G aerobic biofilms degrading two VOC, toluene and ethanol. Oxygen concentration profiles within the biofilm were measured using microsensors. These profiles are thought to be most accurate reflection of the structure and function of aerobic microbial biofilms. The degrading process certainly imposed a structural and functional patterns on the microbial biofilm community growing at the expense of the VOC substrate. Cryosectioning coupled with the staining of biofilm samples confirmed a high respiratory activity near the substratum, that decreased towards the biofilm/fluid interface. The accumulation of inactive cells in the outer biofilm layer protects the inner biofilm from high concentrations of toxic compounds and also limits the degradation rate. This stratification phenomenon appeared to be a general pattern for P. putida 54G biofilms degrading VOC. Received: 25 June 1998 / Accepted: 7 November 1998  相似文献   

20.
Aims: To investigate the structural organization and dynamics of exopolysaccharides (EPS) matrix and microcolonies formation by Streptococcus mutans during the biofilm development process. Methods and Results: Biofilms of Strep. mutans were formed on saliva‐coated hydroxyapatite (sHA) discs in the presence of glucose or sucrose (alone or mixed with starch). At specific time points, biofilms were subjected to confocal fluorescence imaging and computational analysis. EPS matrix was steadily formed on sHA surface in the presence of sucrose during the first 8 h followed by a threefold biomass increase between 8 and 30 h of biofilm development. The initial formation and further development of three‐dimensional microcolony structure occurred concomitantly with EPS matrix synthesis. Tridimensional renderings showed EPS closely associated with microcolonies throughout the biofilm development process forming four distinct domains (i) between sHA surface and microcolonies, (ii) within, (iii) covering and (iv) filling the spaces between microcolonies. The combination of starch and sucrose resulted in rapid formation of elevated amounts of EPS matrix and faster assembly of microcolonies by Strep. mutans, which altered their structural organization and susceptibility of the biofilm to acid killing (vs sucrose‐grown biofilms; P < 0·05). Conclusions: Our data indicate that EPS modulate the development, sequence of assembly and spatial distribution of microcolonies by Strep. mutans. Significance and Impact of the Study: Simultaneous visualization and analysis of EPS matrix and microcolonies provide a more precise examination of the structural organization of biofilms than labelling bacteria alone, which could be a useful approach to elucidate the exact mechanisms by which Strep. mutans influences oral biofilm formation and possibly identify novel targets for effective antibiofilm therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号