首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two series of chitosan derivatives, N-aliphatic acyl chitosans (Cn-CS) and N-aliphatic-O-dicinnamoyl-chitosans (Cn-CinCS) with n=2, 4, 8, 12 and 18, were prepared through regioselective reactions. The solid state structures were studied by FTIR and X-ray diffraction techniques. Two different types of layered structures were found to exist in the powder samples of Cn-CS and Cn-CinCS. The Cn-CS series crystallized into a sheet-type structure, in which all the flexible side chains lied down in the sheet in a direction normal to the backbones and partially interdigitated with each other. For the Cn-CinCS series, the polar backbones were stacked into sheets, and the flexible side chains occupied the space between sheets in a direction inclined to the backbones. The relationship between the structures and the solubilities are discussed.  相似文献   

2.
In this work we use the steady state and time-resolved fluorescence of free and enzyme-bound fluorophores to characterize the binding capacity of both unmodified and hydrophobically modified chitosan polymers. Additionally, fluorescence emission is used to qualitatively characterize the extent to which hydrophobic modification of the chitosan polymer affects the relative polarity of the resultant amphiphillic micelles. In total, these results are used to describe how fluorescence techniques can be used to characterize the chemical microenvironment provided by immobilization polymers such as chitosan. Commentary is also given on how this information can be correlated to enzyme activity and spatial distribution during the immobilization processes.  相似文献   

3.
Chitosan is a deacetylated form of the polysaccharide chitin. Over the last decade, researchers have employed reductive amination to hydrophobically modify chitosan to induce a micellar structure. These micellar polymers have been used for a variety of purposes including drug delivery and enzyme immobilization and stabilization. However, commercial sources of chitosan vary in their degree of deacetylation and there remains a paucity of information regarding how this can impact the modified polymer’s functionality for enzyme immobilization. This paper, therefore, evaluates the effect that the degree of deacetylation has on the hydrophobic modification of medium molecular weight chitosan via reductive amination with long chain aldehydes and the resulting changes in enzyme activity after the immobilization of glucose oxidase in the micellar polymeric structure. The chitosan was deacetylated to differing degrees via autoclaving in 40–45% NaOH solutions and characterized using NMR, viscosity measurements, and differential scan calorimetry. Results suggest that a high degree of deacetylation provides optimal enzyme immobilization properties (i.e. high activity), but that the deacetylation method begins to significantly decrease the polymer molecular weight after a 20 min autoclave treatment, which negatively affects immobilized enzyme activity.  相似文献   

4.
Synthesis and properties of chitosan hydrogels modified with heterocycles   总被引:1,自引:1,他引:0  
Preparation and properties of chitosan modified with heterocycles in absence or presence of gluteraldehyde as a cross linker is described. New modified chitosan–heterocyclic hydrogels were prepared from chitosan and heterocyclic compounds such as N,N′-biisomaleimide, N,N′-biisophthalimide, and N,N′-phthalimidomaleimide via a crosslinking reaction. The new hydrogels chemical structure was characterized by spectral analysis (IR), X-ray diffraction, thermal gravimetric analysis (TGA), solubility, and swellability in water and different organic solvents. Evaluation of the efficiency of the new hydrogels to uptake copper and cobalt ions from aqueous systems was carried out and promising results were obtained.  相似文献   

5.
6.
Films consisting of a blend of a chitosan hydrogel and a conductive polymer, polyaniline (PANI), were prepared and characterized for their electrical and mechanical properties. Polyaniline in emeraldine base (EB) form was dispersed in chitosan solution and blend films were obtained by solution casting. The PANI particles in the blend films were then doped with HCl where we observed reductions in the film tensile strength and Young's modulus by about 30%, but the films electrical conductivity increased by 6 orders of magnitude. The highest electrical conductivity of the blend films was of the order 10−4 S/cm. The electrical and mechanical properties of the films varied with polyaniline content, acid dopant type, acid dopant concentration, and doping time.  相似文献   

7.
Substituted polyaniline/chitosan (sPANI/Ch) composites were chemically synthesized in H2SO4 and CH3COOH synthesis media. Structural and physical properties of the composites were characterized by using FTIR, SEM, TGA, UV–vis, XRD techniques, and conductivity measurements. The effect of synthesis media on morphology, thermal stability, conductivity, and crystalline properties was investigated. Chemical interactions between substituted polyanilines and chitosan were explained using FTIR spectra results. The different morphological surfaces were observed in SEM images of the composites. The size of the substituted polyaniline/chitosan (sPANI/Ch) composites was in nanoscale, and the composites synthesized in acetic acid media showed smaller structures than those of H2SO4 media and pure chitosan. It was interpreted from XRD results that the composites have amorphous structure and the PNEANI/Ch–CH3COOH composite has the highest crystallinity.  相似文献   

8.
The effect of hydrophobic modification on the mechanical and structural characteristics of hydrophobically modified alginate (HMA) solutions and hydrogels were evaluated. The HMA systems consisted of alkyl chains, C8, grafted onto alginate backbones. With an increase in degree of substitution of hydrophobic tails, the association became stronger in solution, but same was not true for gels. The contribution of ionic crosslinking was found to be the dominant factor in determining the mechanical strength of hydrogels. Rheological measurements of 2 wt% HMA gels reveal formation of a strongly crosslinked network with an elastic modulus close to 100 kPa. Small-angle X-ray scattering (SAXS) experiments indicate that HMA assembles into a disordered structure with regions rich in the hydrophobic domain surrounded by a crosslinked hydrophilic network.  相似文献   

9.
Chitosan beads were modified with glutaraldehyde and modified chitosan was investigated as matrix for hydrophobic interaction chromatography. The influence of temperature, type of salt and its ionic strength on the adsorption of -galactosidase was studied. -Galactosidase was found to bind in presence of high concentration of ammonium sulphate (3 M, w/v) and 90% of the bound enzyme was eluted with decreasing salt concentration in presence of 10% ethylene glycol. Attempt was made to purify -galactosidase from modified chitosan, -galactosidase showed 1.7-fold purification with 43.96% recovery of enzyme activity. The SDS–PAGE analysis of enzyme showed considerable purification and its molecular weight was found to be 63–64 kDa. Unlike other chromatographic matrices, the prepared chitosan beads were used five times. The results showed that purification and recovery of the enzyme did not change even when column size was increased.  相似文献   

10.
Chitosan scaffolds were fabricated by application of thermally induced phase separation from aqueous solutions of unmodified chitosan and hydrophobically modified chitosan polymer. The final pore structure, in terms of diameter and geometry, were correlated to freezing temperature and freezing time for both the unmodified and hydrophobically modified chitosan polymer. Results showed that the resulting pore structure is strongly dependent upon the freezing temperature and less dependant upon the freezing time. For scaffolds produced from unmodified chitosan, the pore size decreased as expected with decreasing freezing temperature from ?5 °C to ?10 °C. However, an inconsistency in this trend was observed as the freezing temperature was decreased to ?20 °C. Combined analysis of pore size distribution and average pore diameter suggested that the freezing process was mainly mass transfer dominated at ?5 °C and ?10 °C, but principally heat transfer dominated at ?20 °C. In comparison, the scaffolds produced from hydrophobically modified chitosan (butyl-chitosan) followed the expected trend of decreasing mean pore diameter with decreased freezing temperatures throughout the entire temperature range. The scaffolds produced from the unmodified chitosan were more stable and rigid, and possessed average pore diameters that were generally smaller than those fabricated from the hydrophobically modified chitosan. The generally larger pores in the butyl-modified chitosan scaffolds might be explained by increased phase separation rates due to the introduced hydrophobicity of the chitosan polymer. Among the scaffolds fabricated from the butyl-modified chitosan, those produced at ?20 °C yielded the most uniform pore structure, the smallest average pore diameters, and the least temporal broadening of pore size distribution.  相似文献   

11.
Chemical modification of chitosan by grafting with PLA (CS-g-PLA) was developed via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediated coupling reaction. The introduction of PLA disrupted the crystalline structure of chitosan, improved its solubility and thermal stability. Low degree of PLA substitution showed better degradation efficiency than chitosan and PLA. Weight loss of CS-g-PLA6 and CS-g-PLA4 was 87% and 94%, respectively, in 7 days enzymatic degradation study. CS-g-PLA2 was totally degraded in 1 day. Self-assembly behavior was studied using pyrene fluorescence dye technique and found to be PLA grafting level dependent. CS-g-PLA with low grafting degree showed hydrophilic, self-assembling properties and controllable biodegradability that may widen its applications.  相似文献   

12.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

13.
Qu R  Sun C  Ji C  Wang C  Chen H  Niu Y  Liang C  Song Q 《Carbohydrate research》2008,343(2):267-273
A series of insoluble chitosan (CTS) derivatives were prepared by grafting ester- and amino-terminated dendrimer-like polyamidoamine (PAMAM) into CTS using a divergent method by repeating two processes: (1) Michael addition of methyl acrylate (MA) to surface amino groups, and (2) amidation of the resulting esters with ethylenediamine (EDA). Their structures were characterized by infrared spectra (IR) and wide-angle X-ray diffraction (WAXD). The adsorption capabilities of the products for Au(3+), Pd(2+), Pt(4+), Ag(+), Cu(2+), Zn(2+), Hg(2+), Ni(2+), and Cd(2+) were studied. The results showed that the products exhibited better adsorption capabilities for Au(3+) and Hg(2+) than for other metal ions, and the adsorption capabilities of amino-terminated products were higher than those of ester-terminated ones. Also it was observed that a high percentage of grafting of PAMAM into CTS does not ensure a high adsorption capacity.  相似文献   

14.
Cross-linked magnetic chitosan anthranilic acid glutaraldehyde Schiff's base (CAGS) was prepared for adsorption of both As(V) and Cr(VI) ions and their determination by ICP-OES. Prepared cross-linked magnetic CAGS was investigated by means of SEM, FTIR, wide angle X-ray diffraction (WAXRD) and TGA analysis. The adsorption properties of cross-linked magnetic CAGS resin toward both As(V) and Cr(VI) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time, initial concentration of metal ions, effect of other ions and desorption were studied. The equilibrium was achieved after about 110 min and 120 min for As(V) and Cr(VI), respectively at pH = 2. The adsorption kinetics followed the mechanism of the pseudo-second order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 58.48 and 62.42 mg/g for both Cr(VI) and As(V), respectively. Cross-linked magnetic CAGS displayed higher adsorption capacity for Cr(VI). The adsorption capacity of the metal ions increased with increasing temperature under optimum conditions in case of Cr(VI), but decreased in case of As(V). The metal ion-loaded cross-linked magnetic CAGS were regenerated with an efficiency of greater than 88% using 0.2 M sodium hydroxide (NaOH).  相似文献   

15.
This study was conducted to explore the synergetic effect of a novel plasmid containing a porcine IL-6 gene and CpG motifs on immunity of mice in order to develop an effective adjuvant to boost resistance against infection. The synthetic oligodeoxynucleotide containing 11 CpG motifs was inserted into the reconstructed VR1020 plasmid containing the pig IL-6 gene (VRPIL6), designated VRIL6C, and then encapsulated in chitosan nanoparticles (CNP) prepared by ionic cross linkage, designated VRIL6C-CNP. The 3-week old mice were injected, respectively, with VRIL6C-CNP, VRIL6-CNP, CpG-CNP and VR1020-CNP to detect the changes of immunity. At 28 days post inoculation, the mice were challenged with virulent hemolytic serotype 2 Streptococcus to test their resistance against infection. The results showed that there was a significant increase in immunoglobulins and interleukins in mice receiving VRIL6C-CNP compared with the control groups, as well as an increase in the lymphocytes and monocytes in the inoculated mice, so that the immunity was remarkably improved in the VRIL6C-CNP group. The challenge provoked stronger immunity and protection against infection in the VRIL6C-CNP group than in the control mice that manifested severe symptoms and lesions. This suggests that VRIL6C-CNP could remarkably enhance the nonspecific immunity of mice, and facilitate the development of an effective immunopotentiator to promote the resistance of the animals against infection.  相似文献   

16.
DNA functionalisation is a proven route to program an assembly of nanoparticles into a vast array of nanostructures. In this paper, we used coarse-grained molecular dynamics simulations to study DNA-functionalised nanoparticles and demonstrate the effect of grafted DNA strand composition, specifically the placement and number of contiguous G/C bases in the grafted DNA single strands, on the thermodynamics and structure of nanoparticle assembly at varying grafting densities and particle sizes. At a constant G/C content, nanoparticles assemble more readily when the G/C bases are placed on the outer or middle portions of the strands than on the inner portion. In addition, the number of neighbours within the assembled cluster decreases as the placement of the G/C bases goes from the outer to middle to inner sections of the strand. As the G/C content decreases, the cluster dissociation temperature, Td, decreases, as the enthalpic drive to assemble decreases. At a high G/C content (number of grafts and G/C placement are held constant), as particle size decreases, Td increases. This is because the smaller particles experience a lower entropic loss than do larger particles upon assembly. On the other hand, at a low G/C content, small changes in particle size lead to negligible changes in Td.  相似文献   

17.
The selectivity of chitosan has been modified through metal ion imprinting technique for its potential application in nuclear industry. Considerable reduction in radioactive waste volume, generated during the chemical decontamination of nuclear power plants, can be achieved through the selective removal of the radionuclides. In this context, a Co(II) imprinted chitosan was synthesized using epichlorohydrin as the crosslinker. The selective removal of Co(II) in presence of Fe(II), which is the major non-radioactive ion present in excess during decontamination, was studied. The imprinted chitosan showed selective sorption of Co(II) over Fe(II), while the raw chitosan was selective to Fe(II) over Co(II). The imprinted chitosan was found to retain the enhanced selectivity towards Co(II) under various solution conditions, including typical nuclear reactor decontamination formulations containing strong complexants. The highest uptake by the imprinted chitosan, with maximum selectivity for Co(II) over Fe(II), was obtained in citrate medium at pH 4.8.  相似文献   

18.
Chitosan composite rods (CS–Fe3+) were prepared via an in situ precipitation method. The relationships among the preparation, structures, and properties of the CS–Fe3+ composite rods have been investigated. The results of Fourier-transform infrared spectroscopy (FTIR) and core electron X-ray photoelectron spectroscopy (XPS) indicate that the CS and Fe3+ are coordinated via a chelation mechanism. The content of Fe3+ in the complex was determined by atomic absorption spectrometry (AAS) and elemental analysis (EA), the results of which suggested that the content of Fe3+ in the complex can be controlled by the concentration of the ferric salts during coordination. The changes in thermal stability and crystallization properties were measured by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) patterns, respectively. Scanning electron microscopy (SEM) was used to observe the morphological change of the CS–Fe3+ complex rod. After coordination with Fe3+, the CS rod had a denser, layered structure. However, the layered structure cannot remain intact when the ratios of –NH2/Fe3+ are 100/15 and 100/20. Moreover, its thermal stability decreased, and its bending strength was improved significantly (from 86 MPa to more than 210 MPa), despite the remarkable decrease in the degree of crystallinity.  相似文献   

19.
Cui X  Li CM  Zang J  Yu S 《Biosensors & bioelectronics》2007,22(12):3288-3292
A novel chitosan/PVI-Os(polyvinylimidazole-Os)/CNT(carbon nanotube)/LOD (lactate oxidase) network nanocomposite was constructed on gold electrode for detection of lactate. The composite was nanoengineered by selected matched material components and optimized composition ratio to produce a superior lactate sensor. Positively charged chitosan and PVI-Os were used as the matrix and the mediator to immobilize the negatively charged LOD and to enhance the electron transfer, respectively. CNTs were introduced as the essential component in the composite for the network nanostructure. FESEM (field emission scan electron microscopy) and electrochemical characterization demonstrated that CNT behaved as a cross-linker to network PVI and chitosan due to its nanoscaled and negative charged nature. This significantly improved the conductivity, stability and electroactivity for detection of lactate. The standard deviation of the sensor without CNT in the composite was greatly reduced from 19.6 to 4.9% by addition of CNTs. With optimized conditions the sensitivity and detection limit of the lactate sensor was 19.7 μA mM−1 cm−2 and 5 μM, respectively. The sensitivity was remarkably improved in comparison to the newly reported values of 0.15–3.85 μA mM−1 cm−2. This novel nanoengineering approach for selecting matched components to form a network nanostructure could be extended to other enzyme biosensors, and to have broad potential applications in diagnostics, life science and food analysis.  相似文献   

20.
Alkaline chitosan solutions   总被引:1,自引:0,他引:1  
Rigid and transparent hydrogels were obtained upon pouring chitosan salt solutions into saturated ammonium hydrogen carbonate. Incubation at 20 degrees C for 5 days yielded chitosan carbamate ammonium salt, Chit-NHCO(2)(-)NH(4)(+) a chemical species that either by hydrolysis or by thermal treatment decomposed to restore chitosan in free amine form. Chitosans of different degrees of acetylation, molecular sizes and origins (squid and crustaceans) were used as hydrochloride, acetate, glycolate, citrate and lactate salts. Their hydrogels obtained in ammonium hydrogen carbonate yielded chitosan solutions at pH values as high as 9.6, from which microspheres of regenerated chitosans were obtained upon spray-drying. These materials had a modest degree of crystallinity depending on the partial acylation that took place at the sprayer temperature (168 degrees C). Citrate could cross-link chitosan and impart insolubility to the microspheres. Chloride on the contrary permitted to prepare microspheres of chitosan in free amine form. By the NH(4)HCO(3) treatment, the cationicity of chitosan could be reversibly masked in view of mixing chitosan with alginate in equimolar ratio without coacervation. The clear and poorly viscous solutions of mixed chitosan carbamate and alginate were spray-dried at 115 degrees C to manufacture chitosan-alginate microspheres having prevailing diameter approx 2 micron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号