首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Two non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 μm) and middle sized (~101 μm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.  相似文献   

2.
Quorum sensing controls biofilm formation in Vibrio cholerae   总被引:8,自引:0,他引:8  
  相似文献   

3.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

4.
The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.  相似文献   

5.
Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m2, whereas the original mixed culture produced up to 10 mW/m2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates.  相似文献   

6.
Abstract

The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well?1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.  相似文献   

7.
New monohalogenated maleimide derivatives (with bromine, chlorine or iodine) were synthesized to test the effect of halogen atoms in inhibiting the formation of Pseudomonas aeruginosa biofilm. The evaluation of their biological activities clearly defines a structure–activity relationship. In this study, the bactericidal action of the three compounds was observed at the concentration range 0.3–5.0 mM on Luria-Bertani agar plates. The halogen atom of these molecules was critical in modulating the antibacterial activity, with a slightly higher effectiveness for chlorine. Confocal laser scanning microscopy was used to examine P. aeruginosa biofilms cultivated in flow cells. At concentration as low as 40 μM, the bromine and iodine compounds displayed a total inhibition towards the formation of bacterial biofilm. At this concentration, the bacterial attachment to glass surfaces was strongly affected by the presence of bromine and iodine whereas the chlorine derivative behaved as a bactericidal compound. A bioluminescent reporter strain was then used to detect the effect of the chemically synthesized maleimides on quorum sensing (QS) in P. aeruginosa. At the concentration range 10–100 μM, bioluminescence assays reveal that halogenated maleimides were able to interfere with the QS of the bacterium. Although the relationship between the weak inhibition of cell-to-cell communication (15–55% of the signal) and the high inhibition of biofilm formation has not been elucidated clearly, the results demonstrate that bromo- and iodo-N-substituted maleimides bromine and iodine may be used as new potent inhibitors that control bacterial biofilms.  相似文献   

8.
Well-established biofilms formed by Streptococcus mutans via exopolysaccharide matrix synthesis are firmly attached to tooth surfaces. Enhanced understanding of the physical properties of mature biofilms may lead to improved approaches to detaching or disassembling these highly organized and adhesive structures. Here, the mechanical stability of S. mutans biofilms was investigated by determining their ability to withstand measured applications of shear stress using a custom-built device. The data show that the initial biofilm bulk (~ 50% biomass) was removed after exposure to 0.184 and 0.449 N m?2 for 67 and 115 h old biofilms. However, removal of the remaining biofilm close to the surface was significantly reduced (vs initial bulk removal) even when shear forces were increased 10-fold. Treatment of biofilms with exopolysaccharide-digesting dextranase substantially compromised their mechanical stability and rigidity, resulting in bulk removal at a shear stress as low as 0.027 N m?2 and > a two-fold reduction in the storage modulus (G′). The data reveal how incremental increases in shear stress cause distinctive patterns of biofilm detachment, while demonstrating that the exopolysaccharide matrix modulates the resistance of biofilms to mechanical clearance.  相似文献   

9.
Genetic exchange by natural transformation is an important mechanism of horizontal gene transfer in biofilms. Thirty-two biofilm metrics were quantified in a heavily encapsulated Acinetobacter baylyi strain and a miniencapsulated mutant strain, accounting for cellular architecture, extracellular polymeric substances (EPS) architecture, and their combined biofilm architecture. In general, transformation location, abundance, and frequency were more closely correlated to EPS architecture than to cellular or combined architecture. Transformation frequency and transformant location had the greatest correlation with the EPS metric surface area-to-biovolume ratio. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 μm2/μm3 and less than 5 μm2/μm3. Transformant location shifted toward the biofilm-bulk fluid interface as the EPS surface area-to-biovolume ratio increased. Transformant biovolume was most closely correlated with EPS biovolume and peaked when transformation occurred in close proximity to the substratum. This study demonstrates that biofilm architecture influences A. baylyi transformation frequency and transformant location and abundance. The major role of EPS may be to facilitate the binding and stabilization of plasmid DNA for cellular uptake.  相似文献   

10.
Bacterial biofilms infect 2–4% of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7?×?109 CFU cm?2) and subjected to thermal shocks ranging from 50°C to 80°C for durations of 1–30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control.  相似文献   

11.
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.  相似文献   

12.

A Pseudomonas aeruginosa biofilm was produced in a model system using the bacterial strain NCIMB 8295, grown on silicone tubing (bore size 0.75 cm). Destruction of the biofilm was attempted using either ampicillin or a combination of white light (light dose=7.2 J cmm 2) and the phenothiazinium photosensitiser new methylene blue, and damage, both to extra-cellular polymeric substance (EPS) and to the organism, was monitored. It was found that although little damage to the EPS occurred with ampicillin, NMB caused both cell death and breakdown of the EPS, suggesting the use of photodynamic antimicrobial chemotherapy (PACT) in the disinfection of pathogenic biofilms, e.g. at external catheter surfaces.  相似文献   

13.
14.
Abstract

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7?days of biofilm formation (p?>?0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.  相似文献   

15.
Abstract

Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 μm h?1 in the turbulent flow cell and 1.0 μm h?1 in the laminar flow cell.  相似文献   

16.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

17.
Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting.  相似文献   

18.
Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm?1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.  相似文献   

19.
H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.  相似文献   

20.
Bacteria have evolved multiple mechanisms, such as biofilm formation, to thwart antibiotic action. Yet antibiotics remain the drug of choice against clinical infections. It has been documented that young biofilm of Klebsiella pneumoniae could be eradicated significantly by ciprofloxacin treatment alone. Since age of biofilm is a decisive factor in determining the outcome of antibiotic treatment, in the present study biofilm of K. pneumoniae, grown for extended periods was treated with ciprofloxacin and/or depolymerase producing lytic bacteriophage (KPO1K2). The reduction in bacterial numbers of older biofilm was greater after application of the two agents in combination as ciprofloxacin alone could not reduce bacterial biomass significantly in older biofilms (P > 0.05). Confocal microscopy suggested the induction of structural changes in the biofilm matrix and a decrease in micro-colony size after KPO1K2 treatment. The role of phage associated depolymerase was emphasized by the insignificant eradication of biofilm by a non-depolymerase producing bacteriophage that, however, eradicated the biofilm when applied concomitantly with purified depolymerase. These findings demonstrate that a lytic bacteriophage alone can eradicate older biofilms significantly and its action is primarily depolymerase mediated. However, application of phage and antibiotic in combination resulted in slightly increased biofilm eradication confirming the speculation that antibiotic efficacy can be augmented by bacteriophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号