首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weng L  Li W  Zuo J 《Cryobiology》2011,62(3):210-217
Quantitative analyses of the bound water content in the alcohol aqueous solution and its osmotic behavior should be cryobiologically significant. This paper has presented two applications of the thermogram of the alcohol/water system recorded by differential scanning calorimeter (DSC). Both applications are: (1) generating the quantitative relationship between the bound water content and the solution composition; (2) calculating the osmotic virial coefficients for alcohols. Five alcohols including methanol, ethanol, ethylene glycol, propylene glycol and glycerol are investigated. In the present study, partial binary phase diagrams of these five alcohol solutions are determined in the first place. The bound water contents in these solutions are quantitatively evaluated by three criteria afterwards. In the end, the osmotic virial coefficients for these alcohols are calculated according to the osmotic virial equation. It is turned out that the bound water fraction out of the total water content increases with a rising molality. The ability of the solute to restrict water molecules can be weakened when the solution becomes more concentrated. The results also indicate that propylene glycol should be the strongest “water-blocker” while methanol the weakest one. These findings can deepen our understanding of the cryoprotective properties of the alcohols from the perspectives of their roles in binding free water and promoting the osmotic efflux of cell water.  相似文献   

2.
The effects of a number of related diols, substituted diols and glycerol on the thermal stability of acid-soluble calf skin collagen were investigated. Thermal transition temperatures were determined by optical rotation measurement. Short-chain diols with terminal hydroxyl groups, i.e. ethylene glycol and propane-1,3-diol, stabilized the protein at all accessible concentrations. Stabilization was also observed with glycerol and diethylene glycol. Higher homologues in the diol series produced various effects, as did hydroxyl-group positional isomerism. Monoalkyl substitution of diols progressively lowered the denaturation temperature of collagen. Results are discussed in relation to possible mechanisms of perturbant action.  相似文献   

3.
The behavior of the ternary solutions, water-glycerol-ethylene glycol, on warming after quenching is simple. No hydrate crystallizes, contrary to the system water-glycerol-ethanol; on warming after quenching only the glass transition, the devitrification and fusion peaks appear. The stability of the amorphous state was defined by the critical warming rate above which no crystallization occurs. For a given water content, that stability presents no maximum, but increases from glycerol to ethylene glycol.  相似文献   

4.
Saito N  Imai K  Tomizawa M 《Theriogenology》1994,41(5):1053-1060
We investigated the effect of addition of sugars to a vitrification solution on the survival rate of bovine blastocysts produced in vitro. In vitro-matured (IVM) and in vitro-fertilized (IVF) bovine Day-6 to Day-8 bovine blastocysts were classified into 3 developmental stages: early blastocysts, blastocysts and expanded blastocysts. The blastocysts were cryopreserved in 1 of 3 vitrification solutions: 1) 25% glycerol25% ethylene glycol (GE); 2) 20% glycerol20% ethylene glycol3/4 M sucrose (GES); and 3) 20% glycerol20% ethylene glycol3/8 M sucrose3/8 M dextrose (GESD). The basic solution was Dulbecco's PBS supplemented with 20% of fetal calf serum. Embryos were exposed to each vitrification solution in 3 steps, and after loading into 0.25-ml straws, were plunged into liquid nitrogen. After warming in water bath at 20 degrees C, cryoprotectants were diluted in 1/2 M and 1/4 M sucrose each for 5 min. Equilibration and dilution procedure except warming were conducted at room temperature (23 to 27 degrees C). After dilution, the embryos were cultured in Ham's F10 medium0.1 mM beta-mercaptoethanol20% fetal calf serum. Survival rates of embryos at 48 h of incubation of each of the 3 developmental stages (early blastocysts, blastocysts and expanded blastocysts) exposed to the 3 types of the vitrification solutions (GE, GES and GESD) were 23.5, 33.3, 65.8% (early blastocysts, blastocysts and expanded blastocysts respectively) in GE, 55.6, 71.9, 90.5% in GES and 84.6, 83.3, 95.8% in GESD respectively. These results indicate that a mixture of 25% glycerol25% ethylene glycol is not suitable for vitrification of early bovine blastocysts; however, addition of sugars to the solution significantly (P<0.01) improved the survival rate of the vitrified blastocysts, independently of their stage of development.  相似文献   

5.
Dissociation of tetrameric l-asparaginase from Escherichia coli B was examined in the presence of urea containing one of the following polyhydric alcohols: ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, erythritol, arabitol, adonitol, mannitol, sorbitol, inositol, glucose, sucrose, and polyethylene glycol. Low concentrations of these compounds accelerate the rate of subunit dissociation, and, with the exception of the propanediols and polyethylene glycol, higher concentrations decrease the rate at which the oligomeric enzyme dissociates. The specific concentration at which this transition occurs is related to the length of the carbon chain of the polyhydric alcohols and to the steric configuration of the hydroxyl groups about the asymmetric carbon atoms. In addition, the rate at which the oligomeric enzyme dissociates decreases as the number of hydroxymethyl groups per molecule polyol increases and reaches a maximum with the six carbon members.Low concentrations (1% by volume) of methanol, ethanol, ethylene glycol, propylene glycol, or glycerol contained in the renaturation buffer slightly accelerate the rate of reassembly of denatured subunits. The rate at which reassociation to the tetramer occurs also increases as the number of hydroxymethyl groups per molecule of polyhydric alcohol increases.  相似文献   

6.
Decrease of transport of some polyols in sickle cells   总被引:1,自引:0,他引:1  
This paper reports the results of kinetic studies on the inward net-flux of small non-electrolytes (ethylene glycol, glycerol and erythritol) in sickle cells as compared to normal erythrocytes. Net transport rates were evaluated by turbidimetric measurements for ethylene glycol and glycerol and by hematocrit monitoring for erythritol. A 2-fold and 4-fold reduction in the permeability coefficient for ethylene glycol and glycerol, respectively, were found in sickle cells as compared to normal erythrocytes. In contrast, no significant changes in erythritol transport kinetics were observed. The dependence of glycerol permeability on temperature, pH and oxygenation is the same in both types of cells. A significant correlation was observed between glycerol permeability and cell density only for sickle cells. The results indicate that irreversible modifications of membrane proteins, responsible for the glycerol and ethylene glycol transport, do occur in sickle cells.  相似文献   

7.
The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.  相似文献   

8.
Chitosan is functionalized with poly(ethylene glycol) methyl ether (mPEG) at the amino and hydroxyl groups via a single step reaction in a homogeneous aqueous system. A chitosan aqueous solution obtained from the mixture of chitosan and hydroxybenzotriazole (HOBt) in water is a key factor in providing mild conditions to conjugate mPEG by using a carbodiimide conjugating agent. The reaction at ambient temperature for 24 h gives chitosan-g-mPEG with water solubility with mPEG content as high as 42%. This work demonstrates that a water-soluble chitosan-HOBt complex is an effective system for the preparation of chitosan derivatives via the aqueous system without the use of acids or organic solvents.  相似文献   

9.
The interaction of crystalline amylose and of crystalline and amorphous amylopectin with the plasticisers glycerol or ethylene glycol in the absence of water was studied, by using differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy. Upon heating starch freshly mixed with plasticisers, a strong exothermal interaction enthalpy of ΔH−35 J/g was detected by DSC. At room temperature glycerol interacts mainly with the amorphous starch regions, the interaction taking 8 days to reach equilibrium. For ethylene glycol the interaction is faster, taking four days to reach equilibrium, and the rate is not affected by crystallinity. Ethylene glycol interacts in a more ordered manner with amorphous than with crystalline material, resulting in a narrower ethylene glycol cross-polarisation magic angle spinning (CP/MAS) signal when equilibrium is reached at room temperature. Upon heating, more glycerol or ethylene glycol is immobilised, but in a less ordered manner than upon storage at room temperature. This results in a more intense, but broader plasticiser CP/MAS signal upon heating. Interaction in a more ordered manner probably implies interaction with more of the hydroxy groups of the plasticiser. The polysaccharide mobility is increased more when the plasticiser interacts in a more ordered manner, as observed by small starch signals in HP/DEC spectra.  相似文献   

10.
The freezing point of aqueous two-phase (liquid-liquid) systems containing water, dextran and poly(ethylene glycol) has been lowered by including glycerol. Biological membranes, obtained by fragmentation of a crude synaptosomal preparation from calf brain cortex, have been included in the two-phase systems. The effects of temperature and the concentration of glycerol on the partition of the membranes within the systems have been investigated. Considerable stabilisation of the membranes was noticed when they were partitioned at -10 degrees C compared with 0 degrees C. The influences of glycerol, ethylene glycol, N,N-dimethylformamide and tetrahydrofuran on the phase-forming properties of the systems and on enzyme activities are also presented. Possible use of the above systems for studies and separation of biological membranes are discussed.  相似文献   

11.
SYNOPSIS. Cryoprotectants were tested in both complex and semidefined media for the trypanosomatid Crithidia fasciculata. Near log-phase or end-of-log-phase cultures were frozen for 24–48 hr at ∼ -20 C, then warmed in air to room temperature. Immediate motility was correlated with viability. The best protectant of the 83 tested was glycerol at ∼ 10% (w/v). Survival without cryoprotectant was rare. Outstanding cryoprotectants (perhaps also useful solvents for drugs poorly soluble in water) were: ethylene glycol; 2,2'-dioxyethanol (diethylene glycol); 1,2,4-butanetriol; 1,4-cyclohexanediol; dimethylsulfoxide; propylene glycol; and N -acetylethanolamine. Several sugars were active, e.g., D-arabinose, sucrose, and sorbitol. Trypanosomes tolerated cryoprotectants much less; tolerance was better in growth media than in suspension media. Trypanosoma gambiense was grown in blood-enriched media + 2-2.5% glycerol, suspended in 20% (w/v) glycerol. then frozen; this permitted 3-week survival. T. conorhini survived 4 weeks after growth in media containing glycerol 2.5%+ ethylene glycol 4%+ rutin 1.0 mg per 100 ml.  相似文献   

12.
The interaction of crystalline and amorphous amylopectin with the plasticisers glycerol and ethylene glycol in the absence of water was studied with differential scanning calorimetry (DSC) and solid state NMR. At room temperature glycerol interacts mainly with the amorphous regions, while for ethylene glycol the amylopectin crystallinity does not effect the interaction. After heating the mixtures, an additional immobilisation of the plasticiser occurs. Journal of Industrial Microbiology & Biotechnology (2001) 26, 90–93. Received 09 February 2000/ Accepted in revised form 02 May 2000  相似文献   

13.
Cryopreservation of ovine embryos: slow freezing and vitrification   总被引:5,自引:0,他引:5  
Different methods for the cryopreservation of ovine embryos were evaluated in vitro (survival upon culture in vitro) and in vivo (pregnancy and lambing rates after transfer in field conditions). In the first 2 experiments, slow freezing conditions were evaluated. When glycerol and ethylene glycol were compared, no differences in the overall pregnancy rate were found (40.2 vs 51.3%), but better results were obtained with ethylene glycol than with glycerol in morulae (29.7 vs 59.4%, P < 0.05). In the second experiment, 2 methods of removing ethylene glycol were compared: a 1-step procedure using 0.5-M sucrose and a 3-step process for decreasing ethylene glycol concentration. There were no differences in the overall pregnancy rate (48.0 vs 48.0%) between the 2 methods. The last series of experiments were designed to compare 2 vitrification solutions: propylene glycol--glycerol (PG) and ethylene glycol--Ficoll 70--sucrose (EFS). There were no differences between the 2 vitrification solutions, based on the overall pregnancy rate (28.1 vs 40.0%). The vitrification technique and specially with EFS solution has resulted in good pregnancy rates. The EFS solution was particularly efficacious with morulae (55.5% pregnancy). These results demonstrate that vitrification with EFS can be used successfully for the cryopreservation of ovine embryos.  相似文献   

14.
Mouse morulae were exposed to solutions containing 30-50% of permeable agents (ethylene glycol, glycerol, propylene glycol) in modified phosphate-buffered saline (PB1 medium) at 20 degrees C for 20 min. A high percentage of them developed to expanded blastocysts in culture, after exposure to 30% and 40% ethylene glycol (98 and 84%, respectively), or 30% glycerol (88%). Ethylene glycol and glycerol were diluted to 30 and 40% with PB1 medium or with PB1 containing 30% Ficoll or 30% Ficoll + 0.5 M-sucrose, immersed in liquid nitrogen in straws and warmed in 20 degrees C water. Solutions containing 40% of a permeable agent with Ficoll did not crystallize during cooling or warming. Mouse morulae were exposed to 40% ethylene glycol in PB1 medium containing 30% Ficoll (EF) or PB1 medium + 30% Ficoll + 0.5 M-sucrose (EFS) for 5-20 min at 20 degrees C. EFS solution was non-toxic to the embryos during 5 min of exposure. When embryos, equilibrated in EFS solution for 2 or 5 min at 20 degrees C, were vitrified at -196 degrees C and were warmed rapidly, nearly all embryos developed in culture (97-98%), and 51% developed to live young at term after transfer. This method, which results in virtually no decrease in embryonic viability, may be of practical use for embryo preservation.  相似文献   

15.
We have measured the tritium outexchange of subtilisin BPN'. A consistent and rather small group of hydrogens was isolated by their sensitivity to inhibitor binding. The viscosity dependence of exchange from these inhibitor protected hydrogens was then examined in 0.05 M MES buffer, pH 6.5 and 10 degrees C. The viscosity of the reaction medium was varied by added glycerol and ethylene glycol. The exchange rates were corrected to be compared at identical hydroxyl ion and water activity. The salient observation is the strikingly similar viscosity coupling behavior when compared to the deacylation step of ester hydrolysis catalyzed by the same enzyme (Ng and Rosenberg, Biophysical Chemistry, 39 (1991) 57). We have obtained a viscosity coupling constant of 0.68 -/+ 0.18 for hydrogen exchange in glycerol (cf. 0.65 -/+ 0.11 for deacylation in glycerol, sucrose, glucose and fructose); 1.67 -/+ 0.07 for outexchange (cf. 1.92 -/+ 0.09 for deacylation), in the presence of ethylene glycol. The two reactions are very chemically dissimilar, yet they show very similar viscosity coupling behavior. This together with the well established role of structural fluctuations in hydrogen exchange implies a similar role of structural fluctuations in the deacylation step of subtilisin BPN' catalyzed ester hydrolysis.  相似文献   

16.
Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol)   总被引:5,自引:0,他引:5  
Various aspects of the interaction between the fusogen, poly(ethylene glycol) and phospholipids were examined. The aggregation and fusion of small unilamellar vesicles of egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) and dimyristoylphosphatidylcholine (DMPC) were studied by dynamic light scattering, electron microscopy and NMR. The fusion efficiency of Dextran, glycerol, sucrose and poly(ethylene glycol) of different molecular weights were compared. Lower molecular weight poly(ethylene glycol) are less efficient with respect to both aggregation and fusion. The purity of poly(ethylene glycol) does not affect its fusion efficiency. Dehydrating agents, such as Dextran, glycerol and sucrose, do not induce fusion. 31P-NMR results revealed a restriction in the phospholipid motion by poly(ethylene glycol) greater than that by glycerol and Dextran of similar viscosity and dehydrating capacity. This may be associated with the binding of poly(ethylene glycol) to egg PC, with a binding capacity of 1 mol of poly(ethylene glycol) to 12 mol of lipid. Fusion is greatly enhanced below the phase transition for DMPC, with extensive fusion occurring below 6% poly(ethylene glycol). Fusion of PS small unilamellar vesicles depends critically on the presence of cations. Large unilamellar vesicles were found to fuse less readily than small unilamellar vesicles. The results suggest that defects in the bilayer plays an important role in membrane fusion, and the 'rigidization' of the phospholipid molecules facilitates fusion possibly through the creation of defects along domain boundaries. Vesicle aggregation caused by dehydration and surface charge neutralization is a necessary but not a sufficient condition for fusion.  相似文献   

17.
The aim was to assess the in vitro effect of glycerol, ethylene glycol or acetamide on frozen-thawed ram spermatozoa. Aliquots of each sixteen ejaculates from four rams of the Morada Nova breed were diluted in Tris-egg yolk with glycerol (5%), ethylene glycol (3% or 5%) or acetamide (3% or 5%) and frozen at -196°C. After thawing, progressive sperm motility was greater (P<0.05) in cryopreservation with glycerol 5% and ethylene glycol (3% or 5%) than with acetamide (3% or 5%). Acrosome integrity was greater (P<0.05) with ethylene glycol 5% than acetamide (3% or 5%). The percentage of sperm without oxidative stress was greater (P<0.05) with ethylene glycol (3% or 5%) than with acetamide (3% or 5%). Plasma membrane integrity was greater with glycerol 5% (P<0.05) than with the other cryoprotectants. Thus, it is concluded that glycerol 5% and ethylene glycol 3% or 5% protect ram sperm against the harmful effects of freezing and that glycerol 5% offers greater protection to sperm plasma membrane.  相似文献   

18.
We have performed 20?ns of fully atomistic molecular dynamics simulations of Hen Egg-White Lysozyme in 0, 10, 20, 30, and 100% by weight of glycerol in water to better understand the microscopic physics behind the bioprotection offered by glycerol to naturally occuring biological systems. The solvent exposure of protein surface residues changes when glycerol is introduced. The dynamic behavior of the protein, as quantified by the incoherent intermediate scattering function, shows a nonmonotonic dependence on glycerol content. The fluctuations of the protein residues with respect to each other were found to be similar in all water-containing solvents, but different from the pure glycerol case. The increase in the number of protein–glycerol hydrogen bonds in glycerol–water binary mixtures explains the slowing down of protein dynamics as the glycerol content increases. We also explored the dynamic behavior of the hydration layer. We show that the short length scale dynamics of this layer are insensitive to glycerol concentration. However, the long length scale behavior shows a significant dependence on glycerol content. We also provide insights into the behavior of bound and mobile water molecules.  相似文献   

19.
The present study was performed to develop a suitable cryoprotectant solution for cryopreservation of rat two-cell stage embryos. First, we examined the cell permeability of several cryoprotectants; propylene glycol had the fastest permeability compared to dimethyl sulfoxide, ethylene glycol, and glycerol. Embryos were then exposed to a solution containing propylene glycol to evaluate its effects on fetal development. As the development was similar to that of fresh embryos, P10 (10% v/v propylene glycol in PB1) was used as a pretreatment solution. Next, the effects of the vitrification solution components (sucrose, propylene glycol, ethylene glycol, and Percoll) were examined by observing the vitrification status; 10% v/v propylene glycol, 30% v/v ethylene glycol, 0.3 mol sucrose, and 20% v/v Percoll in PB1 (PEPeS) was the minimum essential concentration for effective vitrification without the formation of ice crystals or freeze fractures.  相似文献   

20.
Lee J  Bae YH  Sohn YS  Jeong B 《Biomacromolecules》2006,7(6):1729-1734
We are reporting alternating multiblock copolymers of poly(L-lactic acid)/poly(ethylene glycol) aqueous solution (> 15 wt %) undergoing sol-gel-sol transition as the temperature increases from 20 to 60 degrees C. Micelles of the multiblock copolymers (in water) are about 20 nm in radius at low temperature. They are aggregated to a larger size as the temperature increases, which should play a critical role in the sol-to-gel transition. The transition temperature and gel window were affected by the molecular weight and composition of the multiblock copolymer. In particular, the aqueous solution of an alternating multiblock copolymer (Mn approximately 6700 daltons) prepared from poly(ethylene glycol) (Mn approximately 600 daltons) and poly(L-lactic acid) (Mn approximately 1300 daltons) showed a maximum modulus at body temperature (37 degrees C). The in situ gel forming ability of the polymer aqueous solution in vivo as well as in vitro indicates that it can be a promising injectable biomaterial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号