首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper reports on the use of molecular dynamics (MD) simulation to investigate the coupling effects of wettability, surface roughness and interfacial nanobubbles (INBs) on wall–fluid interfaces. The fluid properties close to the wall–fluid interface, such as potential energy, density, diffusion coefficients of fluid molecules and effective slip length are simulated. In the cases without surface nanobubbles, regions with lower potential energy have a higher probability of hosting water molecules. The local translational and rotational diffusion coefficients of water within the cavities are strongly influenced by wettability but largely unaffected by hydrodynamic effects. In cases where INBs exist, variations in wettability result in distinctly different argon morphologies. Argon nanobubbles form a convex shape on Wenzel-like interfaces but a shallow concave shape on Cassie-like interfaces. The phenomenon of water molecules invading grooves tends to occur on Wenzel-like interfaces; however, this depends largely on the morphology of the grooves. The high mobility and high density of argon molecules indicate that the state of the argon molecules within the grooves may require further investigation. Our results also show that the effective slip length is significantly influenced by wall–fluid wettability as well as the morphology of INBs.  相似文献   

2.
The influences of surface roughness on the boundary conditions for a simple fluid flowing over hydrophobic and hydrophilic surfaces are investigated by molecular dynamics (MD) simulation. The degree of slip is found to decrease with surface roughness for both the hydrophobic and hydrophilic surfaces. The flow rates measured in hydrophobic channels are larger than those in hydrophilic channels with the presence of slip velocity at the walls. The simulation results of flow rate are correlated with the theoretical predictions according to the assumption of no slip boundary condition. The slip boundary condition also strongly depends on the shear rate near the surface. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. For simple fluids flowing over a hydrophobic surface, the slip length increases linearly with shear rate for both the smooth and rough surfaces. Alternately, the slip length has a power law dependence on the shear rate for the cases of hydrophilic surfaces. It is observed that there is a no-slip boundary condition only when shear rate is low, and partial slip occurs when it exceeds a critical level.  相似文献   

3.
Through recent advances in nanotechnology and molecular engineering, biomimetics - the development of synthetic systems that imitate biological structures and processes - is now emerging at the nanoscale. In this review, we explore biomimetic nanopores and nanochannels. Biological systems are full of nano-scale channels and pores that inspire us to devise artificial pores that demonstrate molecular selectivity or other functional advantages. Moreover, with a biomimetic approach, we can also study biological pores, through bottom-up engineering approaches whereby constituent components can be investigated outside the complex cellular environment.  相似文献   

4.
Wada S  Karino T 《Biorheology》1999,36(3):207-223
It is suspected that physical and fluid mechanical factors play important roles in the localization of atherosclerotic lesions and intimal hyperplasia in man by affecting the transport of cholesterol in flowing blood to arterial walls. Hence, we have studied theoretically the effects of various physical and fluid mechanical factors such as wall shear rate, diffusivity of low density lipoproteins (LDL), and filtration velocity of water at the vessel wall on surface concentration of LDL at an arterial wall by means of a computer simulation of convective and diffusive transport of LDL in flowing blood to the wall of a straight artery under conditions of a steady flow. It was found that under normal physiologic conditions prevailing in the human arterial system, due to the presence of a filtration flow of water at the vessel wall, flow-dependent concentration polarization (accumulation or depletion) of LDL occurs at a blood/endothelium boundary. The surface concentration of LDL at an arterial wall takes higher values than that in the bulk flow in that vessel, and it is affected by three major factors, that is, wall shear rate, gamma w, filtration velocity of water at the vessel wall, Vw, and the distance from the entrance of the artery, L. It increases with increasing Vw and L, and decreasing gamma w hence the flow rate. Thus, under certain circumstances, the surface concentration of LDL could rise locally to a value which is several times higher than that in the bulk flow, or drop locally to a value even lower than a critical concentration for the maintenance of normal functions and survival of cells forming the vessel wall. These results suggest the possibility that all the vascular phenomena such as the localization of atherosclerotic lesions and intimal hyperplasia, formation of cerebral aneurysms, and adaptive changes of lumen diameter and wall structure of arteries and veins to certain changes in hemodynamic conditions in the circulation are governed by this flow-dependent concentration polarization of LDL which carry cholesterol.  相似文献   

5.
W. Zhang  D. Xia 《Molecular simulation》2013,39(15):1223-1228
This paper presents simulations of 3D nanoscale flow in rectangular channel with molecular dynamics simulation method. Rectangular cross section is a frequently encountered geometric shape for nanoscale flow problems. For a given cross sectional height h, we change the width w of the rectangular cross section and analyze the influence of w/h on the flow characteristics. The distributions of density, temperature, boundary slip and flow velocity inside the rectangular cross section are investigated in detail. Liquid argon material and Lennard-Jones potential are used in the simulations. The simulation results are also compared with Navier–Stokes solutions for rectangular channel flows.  相似文献   

6.
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters.  相似文献   

7.
There is considerable evidence for the essential role of surface water in protein function and structure. However, it is unclear to what extent the hydration water and protein are coupled and interact with each other. Here, we show by ESR experiments (cw, DEER, ESEEM, and ESE techniques) with spin-labeling and nanoconfinement techniques that the vitrified hydration layers can be evidently recognized in the ESR spectra, providing nanoscale understanding for the biological interfacial water. Two peptides of different secondary structures and lengths are studied in vitrified bulk solvents and in water-filled nanochannels of different pore diameter (6.1∼7.6 nm). The existence of surface hydration and bulk shells are demonstrated. Water in the immediate vicinity of the nitroxide label (within the van der Waals contacts, ∼0.35 nm) at the water-peptide interface is verified to be non-crystalline at 50 K, and the water accessibility changes little with the nanochannel dimension. Nevertheless, this water accessibility for the nanochannel cases is only half the value for the bulk solvent, even though the peptide structures remain largely the same as those immersed in the bulk solvents. On the other hand, the hydration density in the range of ∼2 nm from the nitroxide spin increases substantially with decreasing pore size, as the density for the largest pore size (7.6 nm) is comparable to that for the bulk solvent. The results demonstrate that while the peptides are confined but structurally unaltered in the nanochannels, their surrounding water exhibits density heterogeneity along the peptide surface normal. The causes and implications, especially those involving the interactions between the first hydration water and peptides, of these observations are discussed. Spin-label ESR techniques are proven useful for studying the structure and influences of interfacial hydration.  相似文献   

8.
Flow of water past an array of single-walled carbon nanotubes (SWNTs) is simulated in this work to determine the interaction parameters of carbon nanotubes (CNTs) and water using Dissipative Particle Dynamics (DPD). For this flow configuration, results from molecular dynamics simulations by Walther et al. are available and can be used for validation (Phys. Rev. E, 2004, 062201). The hydrodynamic properties for SWNT (32, 0) with diameter of 2.5 nm were determined in different Reynolds number flows. A set of appropriate DPD parameters was found so that the drag coefficients of the CNT agreed well with the Stokes–Oseen analytical solution and the fluid slip length on the CNT wall was comparable with the Walther et al. results. It was also found that it is feasible to apply these parameters in longer length and time scales by increasing the number of water molecules grouped into each DPD bead and still maintain the hydrodynamic properties of CNTs as well as their hydrophobic surface character.  相似文献   

9.
Boundary lubrication of articular cartilage by conformal, molecularly thin films reduces friction and adhesion between asperities at the cartilage-cartilage contact interface when the contact conditions are not conducive to fluid film lubrication. In this study, the nanoscale friction and adhesion properties of articular cartilage from typical load-bearing and non-load-bearing joint regions were studied in the boundary lubrication regime under a range of physiological contact pressures using an atomic force microscope (AFM). Adhesion of load-bearing cartilage was found to be much lower than that of non-load-bearing cartilage. In addition, load-bearing cartilage demonstrated steady and low friction coefficient through the entire load range examined, whereas non-load-bearing cartilage showed higher friction coefficient that decreased nonlinearly with increasing normal load. AFM imaging and roughness calculations indicated that the above trends in the nanotribological properties of cartilage are not due to topographical (roughness) differences. However, immunohistochemistry revealed consistently higher surface concentration of boundary lubricant at load-bearing joint regions. The results of this study suggest that under contact conditions leading to joint starvation from fluid lubrication, the higher content of boundary lubricant at load-bearing cartilage sites preserves synovial joint function by minimizing adhesion and wear at asperity microcontacts, which are precursors for tissue degeneration.  相似文献   

10.
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables.  相似文献   

11.
The study of fluid flow through compliant tubes is a fluid-structure type problem, in which a dynamic equilibrium is maintained between the fluid and the tube wall. The analogy between this flow and gas dynamics initiated the use of a number of numerical methods which were originally developed to solve compressible flow in rigid ducts. In this study we investigate the solutions obtained by applying the Lax-Wendroff and MacCormack schemes to one-dimensional incompressible flow through a straight collapsible tube. The time-evolving numerical results were compared with exact steady-state solutions. For boundary conditions which were held fixed after a prescribed rise time, the unsteady numerical solution converges to the exact steady-state solution with very good accuracy. The stability and accuracy of all the methods depend on the amount of viscous pressure loss dictated by wall friction. Flows with undamped oscillations cannot, however, be solved with these techniques.  相似文献   

12.
Bionic systems frequently feature electromagnetic pumping and offer significant advantages over conventional designs via intelligent bio-inspired properties. Complex wall features observed in nature also provide efficient mechanisms which can be utilized in biomimetic designs. The characteristics of biological fluids are frequently non-Newtonian in nature. In many natural systems super-hydrophobic slip is witnessed. Motivated by these phenomena, in this paper, we discussed a mathematical model for the cilia-generated propulsion of an electrically-conducting viscoelastic physiological fluid in a ciliated channel under the action of magnetic field. The rheological behavior of the fluid is simulated with the Johnson-Segalman constitutive model which allows internal wall slip. The regular or coordinated movement of the ciliated edges (which line the internal walls of the channel) is represented by a metachronal wave motion in the horizontal direction which generates a two-dimensional velocity profile. This mechanism is imposed by a periodic boundary condition which generates propulsion in the channel flow. Under the classical lubrication approximation, the boundary value problem is non-dimensionalized and solved analytically with a perturbation technique. The influence of the geometric, rheological (slip and Weissenberg number) and magnetic parameters on velocity, pressure gradient and the pressure rise (evaluated via the stream function in symbolic software) are presented graphically and interpreted at length.  相似文献   

13.
Bioflocculation as a microbial response to substrate limitations   总被引:3,自引:0,他引:3  
Previous theories of nutrient supply to microbial floes assumed that transport within the flocs was by molecular diffusion, and they predict that overall nutrient uptake is reduced in floes compared to dispersed cells. Calculations, supported by recent advances in understanding fluid flow through suspended aggregates, however, have shown that substantial fluid flow may occur through highly permeable bacterial floes. Since bioflocculation of microorganisms in bioreactors is known to occur under conditions of low substrate availability, the rate of substrate uptake is assumed to be mass transfer limited. The hydrodynamic environment of a cell then determines cellular uptake rates. Through development of a relative uptake factor, the overall uptake by cells in flocs in sheared fluids and floes attached to bubbles are compared with the uptake by an identical quantity of dispersed cells. Bioflocculation is found to increase the rate of substrate transport to cells in permeable floes compared to dispersed cells, particularly for large-molecular-weight substrates and when bubbles are present.  相似文献   

14.
Ali N  Hayat T  Sajid M 《Biorheology》2007,44(2):125-138
This paper presents an analysis of the peristaltic flow of a couple stress fluid in an asymmetric channel. The asymmetric nature of the flow is introduced through the peristaltic waves of different amplitudes and phases on the channel walls. Mathematical modelling corresponding to a two-dimensional flow has been carried out. The flow analysis is presented under long wavelength and low Reynolds number approximations. Closed form solutions for the axial velocity, stream function and the axial pressure gradient are given. Numerical computations have been carried out for the pressure rise per wavelength, friction forces and trapping. It is noted that there is a decrease in the pressure when the couple stress fluid parameter increases. The variation of the couple stress fluid parameter with the size of the trapped bolus is also similar to that of pressure. Furthermore, the friction force on the lower channel wall is greater than that on the upper channel wall.  相似文献   

15.
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube   总被引:2,自引:0,他引:2  
Niu J  Fu C  Tan W 《PloS one》2012,7(5):e37274
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.  相似文献   

16.
This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.  相似文献   

17.
In this paper, the hydrodynamics of streamwise wall oscillations on a Couette flow are studied using the molecular dynamics method. Firstly, based on the two-dimensional Couette flow model which is made up of copper wall and argon fluid, the characters of the fluid near the streamwise oscillation wall are simulated under the condition of varied oscillating parameters. By scrupulous data processing, some significative results such as the velocity distribution, the density distribution, the potential energy curves of the flow field and the frictional force of the wall are obtained. Secondly, the mechanism how the wall oscillation brings about change to the frictional drag at liquid–solid interface is investigated. And the results indicate that the frictional drag can be reduced significantly by applying appropriate streamwise oscillation to the solid wall. The drag reduction rate mainly depends on the oscillation parameters. In addition, the decrease in the fluid’s density near the wall is another important reason behind the frictional drag reduction.  相似文献   

18.
In order to detect the effect of the surface charge discreteness on the properties at the solid–liquid interface, a molecular dynamics simulation model considering the vibration of wall atoms was used to investigate the performance of ion and water under different charge distributions. Through the comparison between simulation results and the theoretical prediction, it was found that, with the increasing degree of discreteness, much more counterions were attracted to the surface. These ions formed a denser accumulating layer which was located much nearer to the surface and caused charge inversion. The ions in this layer were non-hydrated or partially hydrated. When a voltage was applied across the nanochannel, this dense accumulating layer did not move unlike the ions near the uniformly charged surface. From the water density profiles obtained in nanochannels with different surface charge distributions, the influence of the surface charge discreteness on water distributions could be neglected.  相似文献   

19.
We use the dissipative particle dynamics (DPD) method to simulate the non-Newtonian electroosmotic flow (EOF) through nanochannels. Contrary to a large amount of past computational efforts dedicated to the study of EOF profile, this work pays attention to the EOF of non-Newtonian fluids, which has been rarely touched in past publications. Practically, there are many MEMS/NEMS devices, in which the EOF behaviour should be treated assuming both non-continuum and non-Newtonian conditions. Therefore, our concern in this work is to simulate the EOF through nanochannels considering both non-Newtonian fluid properties and non-continuum flow conditions. We have chosen DPD as our working tool because it provides several important advantages comparing with the classical time consuming molecular dynamics method. Using the DPD method, we explore the effect of a few important fluid properties and nanochannel parameters on the EOF behaviour and the resulting flow rate magnitudes. Our investigation will result in a number of findings, which have not been reported in past research works.  相似文献   

20.
Fat-perception is thought to be related to a complex interplay between fat-associated flavor release and mouth-feel. Friction sensed between the tongue and the palate seems to play a prominent role: in previous work, we have shown that emulsions that are more sensitive toward coalescence give rise to a lowering of the orally perceived and experimentally measured friction and, probably as a consequence, to an enhanced fat-perception. In this paper, we study in detail the factors determining friction of protein-stabilized emulsions using a novel mouth-mimicking tribometer and model surfaces consisting of PDMS modified in various ways (hydrophobicity, deformability, roughness). We show that unlike in many technological applications where lubrication is essentially hydrodynamic, for physiologically relevant loads, the modified PDMS is boundary and/or mixed lubricated, which is like in-mouth lubrication. We find that an increased sensitivity of the emulsions toward coalescence results in a lower friction, confirming previous results obtained with pig’s tongue. Surface-induced coalescence (or spreading of emulsion droplets) seems to be very important in this, surface hydrophobicity being the dominant trigger. Viscosity of the dispersed phase does not have such a strong influence on both the measured friction and the oral perceived friction. We do find a strong influence of the presence of bulk proteins and saliva on friction. Finally, hardly any dependence of measured friction on fat content of the emulsion was observed, indicating that only a small amount of fat is needed to alter the friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号