首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pal D  Madan V  Mallick BN 《生理学报》2005,57(4):401-413
两种类型的神经元参与了快速眼动(rapid eye movement,REM)睡眠的调节:快速眼动一发放(REM-ON)神经元和快速眼动-沉寂神经元(REM-OFF)。快速眼动-沉寂神经元属去甲肾上腺素能神经元,正如名字表示的那样——在快速眼动睡眠期间停止发放。已有研究表明,这些神经元放电活动的停止是导致快速眼动睡眠的前提条件,γ-氨基丁酸(γ-aminobutyric acid,GABA)可使它们停止发放。如果这嗤神经元不停止发放,脑中的去甲肾上腺素水平将升高,不出现快速眼动睡眠。剥夺快速眼动睡眠所引起的去甲肾上腺素增加,至少是快速眼动睡眠丧失引起Na^+-K^+ATP酶活性增加的原因,而这可能是导致快速眼动睡眠剥夺所引发的各种效应的主要因素。  相似文献   

2.
Phylogenetic analysis of the ecology and evolution of mammalian sleep   总被引:1,自引:0,他引:1  
The amount of time asleep varies greatly in mammals, from 3 h in the donkey to 20 h in the armadillo. Previous comparative studies have suggested several functional explanations for interspecific variation in both the total time spent asleep and in rapid-eye movement (REM) or "quiet" (non-REM) sleep. In support of specific functional benefits of sleep, these studies reported correlations between time in specific sleep states (NREM or REM) and brain size, metabolic rate, and developmental variables. Here we show that estimates of sleep duration are significantly influenced by the laboratory conditions under which data are collected and that, when analyses are limited to data collected under more standardized procedures, traditional functional explanations for interspecific variation in sleep durations are no longer supported. Specifically, we find that basal metabolic rate correlates negatively rather than positively with sleep quotas, and that neither adult nor neonatal brain mass correlates positively with REM or NREM sleep times. These results contradict hypotheses that invoke energy conservation, cognition, and development as drivers of sleep variation. Instead, the negative correlations of both sleep states with basal metabolic rate and diet are consistent with trade-offs between sleep and foraging time. In terms of predation risk, both REM and NREM sleep quotas are reduced when animals sleep in more exposed sites, whereas species that sleep socially sleep less. Together with the fact that REM and NREM sleep quotas correlate strongly with each other, these results suggest that variation in sleep primarily reflects ecological constraints acting on total sleep time, rather than the independent responses of each sleep state to specific selection pressures. We propose that, within this ecological framework, interspecific variation in sleep duration might be compensated by variation in the physiological intensity of sleep.  相似文献   

3.
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin‐based colour. We show here that wild, cross‐fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non‐REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep–wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin‐based coloration.  相似文献   

4.
We hypothesize that rapid eye movement or REM sleep evolved, in part, to mediate sexual/reproductive behaviors and strategies. Because development of sexual and mating strategies depends crucially on early attachment experiences, we further hypothesize that REM functions to mediate attachment processes early in life. Evidence for these hypotheses comes from (1) the correlation of REM variables with both attachment and sexual/reproductive variables; (2) attachment-related and sex-related hormonal release during REM; (3) selective activation during REM of brain sites implicated in attachment and sexual processes; (4) effects of maternal deprivation on REM; (5) effects of REM deprivation on sexual behaviors; and (6) the REM-associated sexual excitation. To explain why we find associations among REM sleep, attachment, and adult reproductive strategies, we rely on recent extensions of parent-offspring conflict theory. Using data from recent findings on genomic imprinting, Haig (2000) and others suggest that paternally expressed genes are selected to promote growth of the developing fetus/child at the expense of the mother, while maternally expressed genes counter these effects. Because developmental REM facilitates attachment-related outcomes in the child, developmental REM may be regulated by paternally expressed genes. In that case, REM may have evolved to support the “aims” of paternal genes at the expense of maternal genes. Patrick McNamara, Ph.D., is an assistant professor of neurology at Boston University School of Medicine and a member of the Department of Neurology at the Boston VA Medical Center. He specializes in study of catecholaminergic mechanisms of cognitive disorders in Parkinson’s and related disorders. He has a long-standing interest in anthropological and evolutionary approaches to medicine and to human cognition. His recent book Mind and Variability applied Darwinian models to problems of memory and identity. He is currently writing a book on the evolutionary psychology of sleep and dreams. Sanford Auerbach, M.D., is an associate professor of neurology and psychiatry at Boston University School of Medicine and medical director of the Neurophysiology Laboratories at the Boston Medical Center. He is a behavioral neurologist and a board-certified sleep specialist. He is also director of the Sleep Disorders Center at Boston Medical Center. He has been associated with the NIH-sponsored Sleep Heart Health Study and other sleep-related research. He has been a member of the executive committee of the Sleep Section of the American Academy of Neurology and a past chair of the Neurology section of the American Sleep Disorders Association. Jayme Dowdall is a medical student at Boston University School of Medicine who plans to specialize in molecular approaches to medical and sleep disorders.  相似文献   

5.
Consciousness is now considered a primary function and activity of the brain itself. If so, consciousness is simply the brain's interpretation and integration of all the information made available to it at any given time. On the assumption that the brain is active across all states of being (wakefulness, REM sleep, and NREM sleep), this article proposes that dreaming and hallucinations represent variations on the same theme. Under usual circumstances during wakefulness, the brain ignores internally generated activity and attends to environmental sensory stimulation. During sleep, dreaming occurs because the brain attends to endogenously generated activity. In unusual settings, such as sleep-deprivation, sensory deprivation, or medication or drug ingestion, the brain attends to exogenous and endogenous activities simultaneously, resulting in hallucinations, or wakeful dreaming. This concept is supported by numerous neurologic conditions and syndromes that are associated with hallucinations.  相似文献   

6.
In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats.  相似文献   

7.
–Twenty-two depressed subjects who met criteria for major depressive disorder were grouped according to their initial REM latency. Subjects with short (≥ 60 min) initial REM latency were separated from those with normal (< 60 min) initial REM latency. Subjects with short initial REM latency were found to have earlier onsets to at least two subsequent REM periods. The number of minutes of REM sleep accumulated were also plotted against elapsed time after sleep onset. The short-latency group accumulated REM sleep earlier than, but at about the same rate as, the normal latency group. These data support the phase-advance hypothesis of REM sleep in depression.  相似文献   

8.
《Chronobiology international》2013,30(8):1016-1023
Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8–10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in different sleep states. These data indicate that heavier animals tend to sleep more, potentially contributing to further weight gain. We conclude that chronic DLAN exposure does not significantly affect sleep timing or homeostasis in mice, supporting the use of dim light with nocturnal rodents in chronobiology research to eliminate the possible covariate of sleep disruption.  相似文献   

9.
Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep–wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep–wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.  相似文献   

10.
1. Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that manifests with parkinsonism, cerebellar ataxia, and autonomic failure in various combinations.2. Orthostatic hypotension, neurogenic bladder, laryngeal stridor and sleep apnea, and rapid eye movement (REM) sleep behavior disorder are prominent manifestations of MSA.3. In MSA, there is severe depletion of catecholaminergic neurons of the C1 and A1 areas in the ventrolateral medulla, and this may contribute to orthostatic hypotension and endocrine disturbances in this disorder, respectively.4. Loss of corticotrophin-releasing factor (CRF) neurons in the pontine micturition area may contribute to neurogenic bladder dysfunction.5. Respiratory abnormalities may reflect loss of cholinergic neurons in the arcuate nucleus of the ventral medulla.6. Loss of cholinergic mesopontine neurons, in the setting of loss of locus ceruleus neurons and preservation of rostral raphe neurons, may contribute to REM sleep abnormalities in MSA.  相似文献   

11.
12.
Both the pineal nonapeptide hormone arginine vasotocin (AVT) (2.5 μg) administered intra-nasally and the pineal indole melatonin (50 mg) administered intravenously to three male narcoleptics (two with auxiliary symptoms and one with sleep attacks only), dramatically increased the amount of REM sleep and decreased REM sleep latency. The duration of the sleep onset REM periods in the two narcoleptics with auxiliary symptoms increased by more than 100 percent after AVT and melatonin administration. In the narcoleptic with sleep attacks only both AVT and melatonin induced REM periods at sleep onset. The hypothesis is advanced that narcolepsy represents an impairment of the melatonin-AVT control in the induction and circadian organization of REM sleep associated with an immaturity of REM triggering centers.  相似文献   

13.
Both the pineal nonapeptide hormone arginine vasotocin (AVT) (2.5 μg) administered intra-nasally and the pineal indole melatonin (50 mg) administered intravenously to three male narcoleptics (two with auxiliary symptoms and one with sleep attacks only), dramatically increased the amount of REM sleep and decreased REM sleep latency. The duration of the sleep onset REM periods in the two narcoleptics with auxiliary symptoms increased by more than 100 percent after AVT and melatonin administration. In the narcoleptic with sleep attacks only both AVT and melatonin induced REM periods at sleep onset. The hypothesis is advanced that narcolepsy represents an impairment of the melatonin-AVT control in the induction and circadian organization of REM sleep associated with an immaturity of REM triggering centers.  相似文献   

14.
Rapid eye movement (REM) sleep is a unique phenomenon expressed in all higher forms of animals. Its quantity varies in different species and with ageing; it is also affected in several psycho-somatic disorders. Several lines of studies showed that after REM sleep loss, the levels of noradrenaline (NA) increase in the brain. The NA in the brain modulates neuronal Na–K ATPase activity, which helps maintaining the brain excitability status. The detailed mechanism of increase in NA level after REM sleep loss and the effect of NA on stimulation of Na–K ATPase in the neurons have been discussed. The findings have been reviewed and discussed with an aim to understand the role of REM sleep in maintaining brain excitability status.  相似文献   

15.
REM sleep is essential for maintenance of body physiology and its deprivation is fatal. We observed that the levels of ALT and AST enzymes and pro-inflammatory cytokines like IL-1β, IL-6 and IL-12 circulating in the blood of REM sleep deprived rats increased in proportion to the extent of sleep loss. But in contrast the levels of IFN-γ and a ∼200 kDa protein, identified by N-terminal sequencing to be alpha-1-inhibitor-3(A1I3), decreased significantly. Quantitative PCR analysis confirmed that REM sleep deprivation down regulates AII3 gene and up regulates IL1 β, IL6 and their respective receptors gene expression in the liver initiating its inflammation.  相似文献   

16.
Mobile phone exposure‐related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full‐night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non‐rapid eye movement (non‐REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone‐like emissions affecting the EEG during non‐REM sleep. Importantly, this low‐level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far‐reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field. Bioelectromagnetics 33:86–93, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
The present study has attempted to elucidate the alteration of serotonin turnover after 24 h REM sleep deprivation in different regions in brain of young rat. Sleep deprivation was induced by the inverted flowerpot technique. Results of this study show increased serotonin turnover after 24 h REM sleep deprivation in all the brain regions except in the hypothalamus. The decreased 5-HT ratio shows increased serotonin in the hypothalamus after 24 h sleep deprivation. This study indicates increased activity of serotonergic neurons in the hypothalamus after 24 h sleep deprivation. This also indicates that the hypothalamus plays a role in the immediate compensatory mechanism during 24 h REM sleep deprivation in young rats.  相似文献   

18.
Schredl  Michael 《Dreaming》2005,15(1):63
In this article I review "The Mind at Night: The New Science of How and Why We Dream," written by Andrea Rock. To begin with this book is an exciting journey through modern dream research. Scientific facts, which are skillfully explained, are complemented by personal accounts of well-known researchers in the field obtained through interviews. The diversity of the themes addressed in the book (e.g., sleep and memory, animal research, imaging studies, dream content analysis, consciousness research, creativity, and lucid dreaming) clearly shows the extensive "detective work" the author has accomplished. The major problem I had--as a researcher in this field--was the structure, or the lack of structure, within the book. Because of the way the book is organized, I decided to structure this review along the following themes: REM sleep, REM sleep and dreaming, biology of dreaming, dream content findings, and the integration of dream research into cognitive neuroscience in general. Despite the lack of structure of the book, Andrea Rock has written a wonderful book about modern dream research that is stimulating for researchers as well as for interested lay persons. I recommend it to everyone who is interested in dream research, the old question of the mind-body relationship, or understanding consciousness in general. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Vasoactive intestinal peptide (VIP) was tested in order to determine its hypnogenic properties in cats. VIP was administered intraventricularly in doses of 10 and 100 ng and compared to Ringer controls. In addition the dose of 100 ng was tested in cats pretreated with 150 mg/kg of chloramphenicol (CAP). The results showed that the 100 ng dose of VIP had small but significant REM enhancing properties, but that it did not protect the animals from the specific REM inhibiting properties of CAP. The results suggest that VIP may participate in the regulation of REM sleep.  相似文献   

20.
Despite the ubiquitous nature of sleep, its functions remain a mystery. In an attempt to address this, many researchers have studied behavioural and electrophysiological phenomena associated with sleep in a diversity of animals. The great majority of vertebrates and invertebrates display a phase of immobility that could be considered as a sort of sleep. Terrestrial mammals and birds, both homeotherms, show two sleep states with distinct behavioural and electrophysiological features. However, whether these features have evolved independently in each clade or were inherited from a common ancestor remains unknown. Unfortunately, amphibians and reptiles, key taxa in understanding the evolution of sleep given their position at the base of the tetrapod and amniote tree, respectively, remain poorly studied in the context of sleep. This review presents an overview of what is known about sleep in amphibians and reptiles and uses the existing data to provide a preliminary analysis of the evolution of behavioural and electrophysiological features of sleep in amphibians and reptiles. We also discuss the problems associated with analysing existing data, as well as the difficulty in inferring homologies of sleep stages based on limited data in the context of an essentially mammalian‐centric definition of sleep. Finally, we highlight the importance of developing comparative approaches to sleep research that may benefit from the great diversity of species with different ecologies and morphologies in order to understand the evolution and functions of sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号