首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications.  相似文献   

2.

Background

There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C).

Methodology/Principal Findings

A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).

Conclusions/Significance

This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.  相似文献   

3.
Power to detect risk alleles using genome-wide tag SNP panels   总被引:1,自引:0,他引:1       下载免费PDF全文
Advances in high-throughput genotyping and the International HapMap Project have enabled association studies at the whole-genome level. We have constructed whole-genome genotyping panels of over 550,000 (HumanHap550) and 650,000 (HumanHap650Y) SNP loci by choosing tag SNPs from all populations genotyped by the International HapMap Project. These panels also contain additional SNP content in regions that have historically been overrepresented in diseases, such as nonsynonymous sites, the MHC region, copy number variant regions and mitochondrial DNA. We estimate that the tag SNP loci in these panels cover the majority of all common variation in the genome as measured by coverage of both all common HapMap SNPs and an independent set of SNPs derived from complete resequencing of genes obtained from SeattleSNPs. We also estimate that, given a sample size of 1,000 cases and 1,000 controls, these panels have the power to detect single disease loci of moderate risk (λ ~ 1.8–2.0). Relative risks as low as λ ~ 1.1–1.3 can be detected using 10,000 cases and 10,000 controls depending on the sample population and disease model. If multiple loci are involved, the power increases significantly to detect at least one locus such that relative risks 20%–35% lower can be detected with 80% power if between two and four independent loci are involved. Although our SNP selection was based on HapMap data, which is a subset of all common SNPs, these panels effectively capture the majority of all common variation and provide high power to detect risk alleles that are not represented in the HapMap data.  相似文献   

4.
We have established the use of a primer extension/mass spectrometry method (the PinPoint assay) for high-throughput SNP genotyping of the human Y chromosome. 118 markers were used to define 116 haplogroups and typing was organised in a hierarchical fashion. Twenty multiplex PCR/primer extension reactions were set up and each sample could be assigned to a haplogroup with only two to five of these multiplex analyses. A single aliquot of one enzyme was found to be sufficient for both PCR and primer extension. We observed 100% accuracy in blind validation tests. The technique thus provides a reliable, cost-effective and automated method for Y genotyping, and the advantages of using a hierarchical strategy can be applied to any DNA segment lacking recombination.  相似文献   

5.
We have developed a new method using the Qbead system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral 'barcodes' are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein-protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications.  相似文献   

6.
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.  相似文献   

7.
In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or α-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and α-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease.  相似文献   

8.
We selected 125 candidate single nucleotide polymorphisms (SNPs) in genes belonging to the human type 1 interferon (IFN) gene family and the genes coding for proteins in the main type 1 IFN signalling pathway by screening databases and by in silico comparison of DNA sequences. Using quantitative analysis of pooled DNA samples by solid-phase mini-sequencing, we found that only 20% of the candidate SNPs were polymorphic in the Finnish and Swedish populations. To allow more effective validation of candidate SNPs, we developed a four-colour microarray-based mini-sequencing assay for multiplex, quantitative allele frequency determination in pooled DNA samples. We used cyclic mini-sequencing reactions with primers carrying 5′-tag sequences, followed by capture of the products on microarrays by hybridisation to complementary tag oligonucleotides. Standard curves prepared from mixtures of known amounts of SNP alleles demonstrate the applicability of the system to quantitative analysis, and showed that for about half of the tested SNPs the limit of detection for the minority allele was below 5%. The microarray-based genotyping system established here is universally applicable for genotyping and quantification of any SNP, and the validated system for SNPs in type 1 IFN-related genes should find many applications in genetic studies of this important immunoregulatory pathway.  相似文献   

9.
动态等位基因特异性杂交(dynamic allele-specific hybridization, DASH)是新发展起来的一种单核苷酸多态(single nucleotide polymorphisms, SNP)等位基因分型技术,具有快速、经济、准确、高通量、重复性好等优点.利用DASH技术,对96份正常人外周血DNA样品成功地进行了两个SNP位点的基因分型,并摸索实验条件,对该技术进行了优化.  相似文献   

10.
Primer-design for multiplexed genotyping   总被引:8,自引:1,他引:8       下载免费PDF全文
Single-nucleotide polymorphism (SNP) analysis is a powerful tool for mapping and diagnosing disease-related alleles. Mutation analysis by polymerase-mediated single-base primer extension (minisequencing) can be massively parallelized using DNA microchips or flow cytometry with microspheres as solid support. By adding a unique oligonucleotide tag to the 5′ end of the minisequencing primer and attaching the complementary antitag to the array or bead surface, the assay can be ‘demultiplexed’. Such high-throughput scoring of SNPs requires a high level of primer multiplexing in order to analyze multiple loci in one assay, thus enabling inexpensive and fast polymorphism scoring. We present a computer program to automate the design process for the assay. Oligonucleotide primers for the reaction are automatically selected by the software, a unique DNA tag/antitag system is generated, and the pairing of primers and DNA tags is automatically done in a way to avoid any crossreactivity. We report results on a 45-plex genotyping assay, indicating that minisequencing can be adapted to be a powerful tool for high-throughput, massively parallel genotyping. The software is available to academic users on request.  相似文献   

11.
High-throughput SNP genotyping on universal bead arrays   总被引:16,自引:0,他引:16  
We have developed a flexible, accurate and highly multiplexed SNP genotyping assay for high-throughput genetic analysis of large populations on a bead array platform. The novel genotyping system combines high assay conversion rate and data quality with >1500 multiplexing, and Array of Arrays formats. Genotyping assay oligos corresponding to specific SNP sequences are each linked to a unique sequence (address) that can hybridize to its complementary strand on universal arrays. The arrays are made of beads located in microwells of optical fiber bundles (Sentrix Array Matrix) or silicon slides (Sentrix BeadChip). The optical fiber bundles are further organized into a matrix that matches a 96-well microtiter plate. The arrays on the silicon slides are multi-channel pipette compatible for loading multiple samples onto a single silicon slide. These formats allow many samples to be processed in parallel. This genotyping system enables investigators to generate approximately 300,000 genotypes per day with minimal equipment requirements and greater than 1.6 million genotypes per day in a robotics-assisted process. With a streamlined and comprehensive assay, this system brings a new level of flexibility, throughput, and affordability to genetic research.  相似文献   

12.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.  相似文献   

13.
Recently a facile method for genotyping single nucleotide polymorphisms (SNPs) using MALDI mass spectrometry, termed the GOOD assay, was developed. It does not require any purification and is performed with simple liquid handling, thermal incubation and cycling steps. Although this method is well suited to automation and high-throughput analysis of SNPs, it did not allow full flexibility due to lack of certain reagents. A complete set of β-cyanoethyl phosphoramidites is presented herein that give this SNP genotyping method full sequence and multiplex capabilities. Applications to SNP genotyping in the prion protein gene, the β-2-adrenergic receptor gene and the angiotensin converting enzyme gene using the GOOD assay are demonstrated. Because SNP genotyping technologies are generally very sensitive to varying DNA quality, the GOOD assay has been stabilised and optimised for low quality DNA. A template extraction method is introduced that allows genotyping from tissue that was taken while placing an ear tag on an animal. This dramatically facilitates the application of genotyping to animal agricultural applications, as it demonstrates that expensive and cumbersome DNA extraction procedures prior to genotyping can be avoided.  相似文献   

14.

Background

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.

Results

A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.

Conclusions

Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.  相似文献   

15.
Listeria monocytogenes is responsible for serious invasive illness associated with consumption of contaminated food and places a significant burden on public health and the agricultural economy. We recently developed a multilocus genotyping (MLGT) assay for high-throughput subtype determination of L. monocytogenes lineage I isolates based on interrogation of single nucleotide polymorphisms (SNPs) via multiplexed primer extension reactions. Here we report the development and validation of two additional MLGT assays that address the need for comprehensive DNA sequence-based subtyping of L. monocytogenes. The first of these novel MLGT assays targeted variation segregating within lineage II, while the second assay combined probes for lineage III strains with probes for strains representing a recently characterized fourth evolutionary lineage (IV) of L. monocytogenes. These assays were based on nucleotide variation identified in >3.8 Mb of comparative DNA sequence and consisted of 115 total probes that differentiated 93% of the 100 haplotypes defined by the multilocus sequence data. MLGT reproducibly typed the 173 isolates used in SNP discovery, and the 10,448 genotypes derived from MLGT analysis of these isolates were consistent with DNA sequence data. Application of the MLGT assays to assess subtype prevalence among isolates from ready-to-eat foods and food-processing facilities indicated a low frequency (6.3%) of epidemic clone subtypes and a substantial population of isolates (>30%) harboring mutations in inlA associated with attenuated virulence in cell culture and animal models. These mutations were restricted to serogroup 1/2 isolates, which may explain the overrepresentation of serotype 4b isolates in human listeriosis cases.  相似文献   

16.
We have developed and validated a consolidated bead-based genotyping platform, the Bioplex suspension array for simultaneous detection of multiple single nucleotide polymorphisms (SNPs) of the ATP-binding cassette transporters. Genetic polymorphisms have been known to influence therapeutic response and risk of disease pathologies. Genetic screening for therapeutic and diagnostic applications thus holds great promise in clinical management. The allele-specific primer extension (ASPE) reaction was used to assay 22 multiplexed SNPs for eight subjects. Comparison of the microsphere-based ASPE assay results to sequencing results showed complete concordance in genotype assignments. The Bioplex suspension array thus proves to be a reliable, cost-effective and high-throughput technological platform for genotyping. It can be easily adapted to customized SNP panels for specific applications involving large-scale mutation screening of clinically relevant markers.  相似文献   

17.
《PloS one》2009,4(11)

Background

Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting.

Methodology

We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact.

Conclusions

Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.  相似文献   

18.

Background

Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simpliCity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation.

Results

SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe.

Conclusions

Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.  相似文献   

19.
Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb) and 7 (1.1 Mb) from an individual from the International HapMap Project (NA12872). We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage≥4-fold, and 97.9% concordant in regions with coverage≥15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.  相似文献   

20.
The development and application of genomic tools to loblolly pine (Pinus taeda L.) offer promising insights into the organization and structure of conifer genomes. The application of a high-throughput genotyping assay across diverse forest tree species, however, is currently limited taxonomically. This is despite the ongoing development of genome-scale projects aiming at the construction of expressed sequence tag (EST) libraries and the resequencing of EST-derived unigenes for a diverse array of forest tree species. In this paper, we report on the application of Illumina’s high-throughput GoldenGate™ SNP genotyping assay to a loblolly pine mapping population. Single nucleotide polymorphisms (SNPs) were identified through resequencing of previously identified wood quality, drought tolerance, and disease resistance candidate genes prior to genotyping. From that effort, a 384 multiplexed SNP assay was developed for high-throughput genotyping. Approximately 67% of the 384 SNPs queried converted into high-quality genotypes for the 48 progeny samples. Of those 257 successfully genotyped SNPs, 70 were segregating within the mapping population. A total of 27 candidate genes were subsequently mapped onto the existing loblolly pine consensus map, which consists of 12 linkage groups spanning a total map distance of 1,227.6 cM. The ability of SNPs to be mapped to the same position as fragment-based markers previously developed within the same candidate genes, as well as the pivotal role that SNPs currently play in the dissection of complex phenotypic traits, illustrate the usefulness of high-throughput SNP genotyping technologies to the continued development of pine genomics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号