首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant impediment to the widespread use of noninvasive in vivo vascular imaging techniques is the current lack of suitable intravital imaging probes. We describe here a new strategy to use viral nanoparticles as a platform for the multivalent display of fluorescent dyes to image tissues deep inside living organisms. The bioavailable cowpea mosaic virus (CPMV) can be fluorescently labeled to high densities with no measurable quenching, resulting in exceptionally bright particles with in vivo dispersion properties that allow high-resolution intravital imaging of vascular endothelium for periods of at least 72 h. We show that CPMV nanoparticles can be used to visualize the vasculature and blood flow in living mouse and chick embryos to a depth of up to 500 microm. Furthermore, we show that the intravital visualization of human fibrosarcoma-mediated tumor angiogenesis using fluorescent CPMV provides a means to identify arterial and venous vessels and to monitor the neovascularization of the tumor microenvironment.  相似文献   

2.
Previous studies have shown that a functionalized viral nanoparticle can be used as a fluorescent signal-generating element and enhance detection sensitivity for immunoassays and low density microarrays. In this study, we further tested this ability in commercial DNA microarrays, including Affymetrix high density resequencing microarray. Optimum conditions for NeutrAvidin and dye coupling to a double-cysteine mutant of cowpea mosaic virus (CPMV) were found to be comparable to the commonly used streptavidin-phycoerythrin (SAPE) for high density resequencing microarray. A 3-fold signal enhancement in comparison to Cy5-dCTP controls was obtained when using nanoparticles on control scorecard expression microarrays. Hybridization results from commercially available 8000 rat expression arrays indicate an increment of 14% on the detected features when the virus complex was used as the staining reagent in comparison to Cy5-dCTP controls. The current work shows the utility of the CPMV-dye nanoparticles as a detection reagent in well-established detection platforms.  相似文献   

3.
We have investigated the complex formation between an immobilized monoclonal antibody and antigens that differ in size about 50-fold. As a model system, we used an iodinated progesterone derivative and a progesterone-horseradish peroxidase conjugate as tracer and a monoclonal antibody as binding protein. The antibody was immobilized by four different methods: physical adsorption, chemical binding, and binding via protein G in the absence or presence of a protective protein (gelatin). These investigations have shown that the performance of competitive immunoassays is determined by a combination of factors: (a) the relative size of the analyte and the tracer, (b) the antibody density on the solid matrix, (c) the method of immobilization of the antibody, and (d) the binding constants between antibody-analyte and antibody-tracer. All of these interactions have to be considered in designing an optimal immunoassay. The smaller antigen can form a 3- to 35-fold higher maximal complex density than the larger antigen. Dose-response curves are less affected by the size of the tracer than by the binding constant with the antibody. A large enzyme tracer with a relatively low binding constant can, therefore, provide a more sensitive assay. On the other hand, the increase in complex density achieved with a smaller tracer yields a higher signal that in turn can provide a better signal-to-noise ratio in highly sensitive competitive solid-phase immunoassays. We have suggested a model for antibody immobilization that accounts for the interdependence of tracer size, complex formation, and antibody density. The methods described can be used to design and optimize immunoassays of predefined performance characteristics. The results are particularly useful for converting radioimmunoassays to enzyme immunoassays.  相似文献   

4.
Fluorescence immunoassays are widely used in life science research, medical diagnostics, and environmental monitoring due to the intrinsically high specificity, simplicity, and versatility of immunoassays, as well as the availability of a large variety of fluorescent labeling molecules. However, the sensitivity needs to be improved to meet the ever-increasing demand in the new proteomics era. Here, we report a simple method of attaching multiple fluorescent labels on an antibody with a dye/DNA conjugate to increase the immunoassay sensitivity. In the work, mouse IgG adsorbed on the surface of a 96-well plate was detected by its immunoreaction with biotinylated goat anti-mouse antibody. A 30 base pair double-stranded oligonucleotide terminated with biotin was attached to the antibody through the biotin/streptavidin/biotin interaction. Multiple labeling of the antibody was achieved after a fluorescent DNA probe was added into the solution and bound to the oligonucleotide at high ratios. By comparison with fluorescein-labeled streptavidin, the assay with the dye/DNA label produced up to 10-fold increase in fluorescence intensity, and consequently about 10-fold lower detection limit. The multiple labeling method uses readily available reagents, and is simple to implement. Further sensitivity improvement can be obtained by using longer DNAs for antibody labeling, which can incorporate more fluorescent dyes on each DNA.  相似文献   

5.
Replication of cowpea mosaic virus (CPMV) is associated with small membranous vesicles that are induced upon infection. The effect of CPMV replication on the morphology and distribution of the endomembrane system in living plant cells was studied by expressing green fluorescent protein (GFP) targeted to the endoplasmic reticulum (ER) and the Golgi membranes. CPMV infection was found to induce an extensive proliferation of the ER, whereas the distribution and morphology of the Golgi stacks remained unaffected. Immunolocalization experiments using fluorescence confocal microscopy showed that the proliferated ER membranes were closely associated with the electron-dense structures that contain the replicative proteins encoded by RNA1. Replication of CPMV was strongly inhibited by cerulenin, an inhibitor of de novo lipid synthesis, at concentrations where the replication of the two unrelated viruses alfalfa mosaic virus and tobacco mosaic virus was largely unaffected. These results suggest that proliferating ER membranes produce the membranous vesicles formed during CPMV infection and that this process requires continuous lipid biosynthesis.  相似文献   

6.
High sensitivity immunoassays using particulate fluorescent labels.   总被引:7,自引:0,他引:7  
The use of polystyrene fluorescent microspheres as sensitive labels in direct-detection (not enzymatically amplified) heterogeneous equilibrium "sandwich" immunoassays in 96-well plates is described. With mouse IgG as a model antigen, a fluorescent particulate label is more sensitive than a corresponding soluble reporter. The limit of detection of mouse IgG in the multiparametrically optimized assay was 0.2 ng/ml (7.6 x 10(8) antigens/ml) for the particulate reporter and 50 ng/ml (1.9 x 10(11) antigens/ml) for the soluble reporter. The sensitivities of assays using the particulate label were dependent on the surface densities of the capture and reporter antibodies and the concentration of reporter beads. Sensitivity was improved by adding the preformed reporter antibody/fluorescent microsphere complex to trapped antigen on the well surfaces instead of sequentially adding the reporter antibody and then the fluorescent microspheres. Maximal (equilibrium) binding of the particulate reporter to captured antigen occurred after 20 h with a concentration of 1.4 x 10(9) reporter beads/ml. Thus, particulate fluorescent labels provide high sensitivity in direct-detection immunoassays.  相似文献   

7.
Five monoclonal antibodies (McAbs) were raised to the tobamovirus, odontoglossum ringspot virus (ORSV). All five McAbs reacted with the virus in double antibody sandwich (DAS) ELISA but not in an ELISA using virus-coated plates. All the McAbs recognized a panel of ORSV strains and isolates, although one of the antibodies reacted better with some isolates and another reacted less with certain isolates than with type ORSV. It was possible to use the same McAbs both as coating and as biotinylated antibody in DAS-ELISA. None of the five McAbs was able to bind to orchid strains of tobacco mosaic virus (TMV). In order to detect strains of both viruses, ORSV and TMV, in infected orchids it was necessary to include also McAbs raised against TMV in the immunoassays. The use of a mixed polyclonal-monoclonal antibody DAS-ELISA system is advocated for detecting both tobamoviruses in orchids.  相似文献   

8.

Background

Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles'' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism.

Methods and Findings

In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections.

Conclusions

The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus.  相似文献   

9.
Quantitative immunoassay of biotoxins on hydrogel-based protein microchips   总被引:3,自引:0,他引:3  
Three-dimensional gel-based microchips with immobilized proteins were used for quantitative immunoassay of a series of plant (ricin and viscumin) and bacterial (staphylococcal enterotoxin B, tetanus and diphtheria toxins, and lethal factor of anthrax) toxins. It was shown that different types of immunoassays (direct, competitive, and sandwich type) could be carried out on gel microchips. As shown by confocal microscope studies, antigen-antibody interactions involving the formation of tertiary antibody-antigen-antibody complex occur in the whole volume of microchip gel elements. Sandwich assay on microchips with immobilized antibodies provided the highest sensitivity of detection (0.1 ng/ml for ricin). Antibodies labeled with fluorescent dyes, horseradish peroxidase conjugates, or biotinylated antibodies with subsequent treatment with labeled avidin were used as developing antibodies. The results of immunoassays were recorded using fluorescence, chemiluminescence, or matrix-assisted laser desorption ionization mass spectrometry directly from microchip gel elements. Gel microchips with immobilized capture antibodies were used to analyze the sample simultaneously for the presence of all six biotoxins with the same sensitivity as that for any single toxin.  相似文献   

10.
[目的]建立流式微球一步法快速免疫检测马铃薯A病毒(PVA)的新方法.[方法]以荧光微球为反应载体,通过在微球表面进行双抗夹心免疫反应形成微球-捕获抗体-PVA-标记FITC检测抗体的复合物,利用流式细胞仪荧光检测系统收集荧光信号.[结果]通过实验优化检测条件,最佳捕获抗体工作浓度为4μg/mL、最佳检测抗体工作浓度为1:25倍稀释、最佳反应时间为2h;与马铃薯Y病毒、莴苣花叶病毒、番茄环斑病毒等均未出现交叉反应;阳性样品经64倍稀释后依然可检出,检测灵敏度是传统微孔板ELISA的4倍.[结论]流式微球一步法能灵敏、快速、简便的检测马铃薯A病毒.  相似文献   

11.
Cowpea mosaic virus (CPMV) replication induces an extensive proliferation of endoplasmic reticulum (ER) membranes, leading to the formation of small membranous vesicles where viral RNA replication takes place. Using fluorescent in situ hybridization, we found that early in the infection of cowpea protoplasts, CPMV plus-strand RNA accumulates at numerous distinct subcellular sites distributed randomly throughout the cytoplasm which rapidly coalesce into a large body located in the center of the cell, often near the nucleus. The combined use of immunostaining and a green fluorescent protein ER marker revealed that during the course of an infection, CPMV RNA colocalizes with the 110-kDa viral polymerase and other replication proteins and is always found in close association with proliferated ER membranes, indicating that these sites correspond to the membranous site of viral replication. Experiments with the cytoskeleton inhibitors oryzalin and latrunculin B point to a role of actin and not tubulin in establishing the large central structure. The induction of ER membrane proliferations in CPMV-infected protoplasts did not coincide with increased levels of BiP mRNA, indicating that the unfolded-protein response is not involved in this process.  相似文献   

12.
BACKGROUND: An increasing volume of data suggests a relationship between cytokine levels in human body fluids and disease pathogenesis. Traditionally, many individual assays would be performed to measure the large number of known cytokines and determine their associations with disease. A new technique for the simultaneous measurement of multiple cytokines in cell culture supernatants by fluorescent microsphere-based flow cytometry was adapted to human sera. METHODS: Multiplexed sandwich immunoassays for eight cytokines were developed by coupling cytokine-specific capture antibodies to beads with different emission spectra. The binding of biotinylated detection antibodies bound with a streptavidin-conjugated fluorochrome was analyzed. Recovery of "spiked" cytokines, sensitivity, and variability of the assays were evaluated. In addition, the results of the bead assays were compared with the results of commercial enzyme-linked immunosorbent assays (ELISAs) that used the same antibody pairs. RESULTS: Correlations of the bead assays and the ELISAs were 0.974 (n = 18) for supernatant samples and 0.859 (n = 28) for serum samples. High, false-positive values observed with some sera, assumed to be produced by heterophilic antibodies, were reduced by preincubation with a cocktail of animal sera. CONCLUSIONS: Fluorescent bead-based immunoassays can be used to quantitate multiple cytokines in human sera and contribute to an understanding of the role of cytokines in disease processes. This methodology is applicable to many combinations of purified analytes and high-affinity antibodies. Published 2001 Wiley-Liss, Inc.  相似文献   

13.
The plant virus cowpea mosaic virus (CPMV) has recently been developed as a biomolecular platform to display heterologous peptide sequences. Such CPMV-peptide chimeras can be easily and inexpensively produced in large quantities from experimentally infected plants. This study utilized the CPMV chimera platform to create an antiviral against measles virus (MV) by displaying a peptide known to inhibit MV infection. This peptide sequence corresponds to a portion of the MV binding site on the human MV receptor CD46. The CPMV-CD46 chimera efficiently inhibited MV infection of HeLa cells in vitro, while wild-type CPMV did not. Furthermore, CPMV-CD46 protected mice from mortality induced by an intracranial challenge with MV. Our results indicate that the inhibitory CD46 peptide expressed on the surface of CPMV retains virus-binding activity and is capable of inhibiting viral entry both in vitro and in vivo. The CD46 peptide presented in the context of CPMV is also up to 100-fold more effective than the soluble CD46 peptide at inhibiting MV infection in vitro. To our knowledge, this study represents the first utilization of a plant virus chimera as an antiviral agent.  相似文献   

14.
The fusion protein of streptavidin to aequorin (STA-AQ) was highly purified from inclusion bodies in Escherichia coli cells and applied to a bioluminescent sandwich immunoassay. α-Fetoprotein (AFP), which is a serological marker of liver cancer, was used as a model analyte to test STA-AQ in an immunoassay. The measurable range of AFP by the sandwich immunoassay, using the complex of STA-AQ and the biotinylated anti-AFP antibody, was 0.02-200 ng/mL with an average coefficient of variation of 4.9%. The detection sensitivity with the complex of STA-AQ and the biotinylated anti-AFP antibody was similar to that with the complex of biotinylated aequorin, streptavidin and the biotinylated anti-AFP antibody. STA-AQ would be a useful reporter protein for immunoassays.  相似文献   

15.
A new recombinant virus which labeled the infected neurons in a Golgi stain-like fashion was developed. The virus was based on a replication-defective Sindbis virus and was designed to express green fluorescent protein with a palmitoylation signal (palGFP). When the virus was injected into the ventrobasal thalamic nuclei, many neurons were visualized with the fluorescence of palGFP in the injection site. The labeling was enhanced by immunocytochemical staining with an antibody to green fluorescent protein to show the entire configuration of the dendrites. Thalamocortical axons of the infected neurons were also intensely immunostained in the somatosensory cortex. In contrast to palGFP, when DsRed with the same palmitoylation signal (palDsRed) was introduced into neurons with the Sindbis virus, palDsRed neither visualized the infected neurons in a Golgi stain-like manner nor stained projecting axons in the cerebral cortex. The palDsRed appeared to be aggregated or accumulated in some organelles in the infected neurons. Anterograde labeling with palGFP Sindbis virus was very intense, not only in thalamocortical neurons but also in callosal, striatonigral, and nigrostriatal neurons. Occasionally there were retrogradely labeled neurons that showed Golgi stain-like images. These results indicate that palGFP Sindbis virus can be used as an excellent anterograde tracer in the central nervous system.  相似文献   

16.
The fusion protein of streptavidin to aequorin (STA-AQ) was highly purified from inclusion bodies in Escherichia coli cells and applied to a bioluminescent sandwich immunoassay. α-Fetoprotein (AFP), which is a serological marker of liver cancer, was used as a model analyte to test STA-AQ in an immunoassay. The measurable range of AFP by the sandwich immunoassay, using the complex of STA-AQ and the biotinylated anti-AFP antibody, was 0.02–200 ng/mL with an average coefficient of variation of 4.9%. The detection sensitivity with the complex of STA-AQ and the biotinylated anti-AFP antibody was similar to that with the complex of biotinylated aequorin, streptavidin and the biotinylated anti-AFP antibody. STA-AQ would be a useful reporter protein for immunoassays.  相似文献   

17.
Tubular structures extending from plasmodesmata in cowpea mosaic virus (CPMV)-infected tissue have been implicated to play an important role in cell-to-cell movement of this virus. Using a cauliflower mosaic virus 35S promoter-based transient expression vector, we show that expression of only the CPMV M RNA-encoded 48-kDa protein (48K protein) in cowpea protoplasts is sufficient to induce these structures. Strikingly, expression of the 48K protein in protoplasts from a number of nonhost plant species, such as barley, Arabidopsis thaliana, and carrot, also resulted in tubular structure formation. Thus, it is not likely that the viral 48K protein, though playing a key role in cell-to-cell movement of CPMV, has a role in determining the host range of CPMV.  相似文献   

18.
Plant expression systems based on nonreplicating virus‐based vectors can be used for the simultaneous expression of multiple genes within the same cell. They therefore have great potential for the production of heteromultimeric protein complexes. This work describes the efficient plant‐based production and assembly of Bluetongue virus‐like particles (VLPs), requiring the simultaneous expression of four distinct proteins in varying amounts. Such particles have the potential to serve as a safe and effective vaccine against Bluetongue virus (BTV), which causes high mortality rates in ruminants and thus has a severe effect on the livestock trade. Here, VLPs produced and assembled in Nicotiana benthamiana using the cowpea mosaic virus–based HyperTrans (CPMV‐HT) and associated pEAQ plant transient expression vector system were shown to elicit a strong antibody response in sheep. Furthermore, they provided protective immunity against a challenge with a South African BTV‐8 field isolate. The results show that transient expression can be used to produce immunologically relevant complex heteromultimeric structures in plants in a matter of days. The results have implications beyond the realm of veterinary vaccines and could be applied to the production of VLPs for human use or the coexpression of multiple enzymes for the manipulation of metabolic pathways.  相似文献   

19.
To study the impact of regulatory sequences from Cowpea mosaic virus (CPMV) on Cre-mediated recombination rates, the cre gene was flanked by the 5′ non-translated and 3′ non-translated regions of CPMV. This cre configuration was tested by simultaneous excision of nptII selectable marker gene and heat-inducible cre recombinase gene in potato. Fusion of the cre recombinase sequence with modified regulatory sequences of CPMV increased both the excision efficiencies in primary regenerants and transmission frequencies of recombined loci to vegetative progeny as was confirmed by molecular analysis. These data might have practical implication with regard to selection of putative recombinants in vegetative progeny of potato and other clonally propagated plants as well.  相似文献   

20.
Recent developments in infrared laser technology have enabled the design of a compact instrumentation for two-photon excitation microparticle fluorometry (TPX). The microparticles can be used in immunoassays as the antibody-coated solid phase to capture an antigen and then detect it with a fluorescently labeled tracer antibody. Unlike most other methods, TPX technology allows low-volume, homogeneous immunoassays with real-time measurements of assay particles in the presence of a moderate excess of fluorescent tracer. In this study, the TPX assay system was used for the reagent characterization and the measurement of C-reactive protein (CRP) in diluted plasma samples, targeting the assay range useful in infectious disease diagnosis. The pentameric structure of the CRP permitted the optimization of an assay with the lowest detectable concentration of 1 microg/L (7.5 pM) by using a single monoclonal antibody both for capture and as the tracer. With a 1:200 predilution of samples, the measurement range of the assay was 1-150 mg/L, but an additional 1:10 dilution was required for higher concentrations. The TPX method showed a good correlation with the reference result obtained in a routine hospital laboratory, demonstrating the feasibility of the technology for immunodiagnostic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号