首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific activity and enzyme protein concentration of the developmentally regulated enzyme glucose 6-phosphate dehydrogenase (G6PD) were measured in the developing aggregates and supporting mycelium of a fruiting-impaired variant strain of Agaricus bisporus. The nonregulated enzymes mannitol dehydrogenase (MD) and hexokinase (HK) were assayed for comparison. G6PD activity was higher in aggregates than in the mycelium, whereas MD and HK activities varied little between mycelium and aggregates. Enzyme protein levels varied in a way different from enzyme activity, suggesting the presence of inactive enzyme at times during development. The raised level of G6PD in aggregates provides a possible mechanism for the increased mannitol concentration previously observed in aggregates. There was no parallel to the rapid increase in G6PD activity associated with primordium development of normally fruiting strains growing on compost.  相似文献   

2.
3.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

4.
Glycogen phosphorylase in the vegetative mycelium ofFlammulina velutipes converts glycogen to α-glucose 1-phosphate (G1P) in the colony during fruit-body development. Glycogen may contribute to the synthesis of trehalose as the starting material in the vegetative mycelium during the fruiting process of the colony, and the trehalose produced is translocated into the fruit-bodies as the main carbohydrate substrate for their development. Trehalose phosphorylase activity in the vegetative mycelium was at a relatively high level until fruit-body initiation, suggesting the turnover of this disaccharide during the vegetative stage of the colony development. Trehalose phosphorylase activity in the stipes showed a peak level at the early phase of fruit-body development, suggesting the continuing phosphorolysis of trehalose by this enzyme. The stipes also showed a high specific activity of phosphoglucomutase at a sufficient level to facilitate the conversion of G1P to α-glucose 6-phosphate (G6P). In the pilei a large amount of G1P remained until the growth of the fruit-bodies ceased. Trehalase activities in the stipes and pilei were at a very low level, and this enzyme may not contribute to the catabolism of trehalose in the fruit-body development.  相似文献   

5.
In this experimental study, the effect of fish n-3 fatty acids was studied on the some important enzymes of carbohydrate metabolism, hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) in rat liver. Wistar albino rats of experimental group (n= 9) were supplemented fish omega-3 fatty acids (n-3 PUFA) as 0.4 g/kg bw. by gavage for 30 days in addition to their normal diet. Isotonic solution was given to the control group (n= 8) by the same way. At 30th day, the rats were killed by decapitation under ether anesthesia, autopsied and liver was removed. Spectrophotometric methods were used to determine the activities of above-mentioned enzymes in the liver. The n-3 PUFA caused increases in the activities of HK, G6PD, LDH, and MDH in comparison with control. These increases were statistically significant (P < 0.01) except 6PGD activity. As a result, n-3 PUFA may regulate the metabolic function of liver effectively by increasing HK, G6PD, 6PGD, LDH, and MDH enzyme activities of rat liver when added in enough amounts to the regular diet.  相似文献   

6.
Effects of prolactin (PRL), bromocriptine (Br), testosterone propionate (TP), dihydrotestosterone (DHT) and the combinations of these androgens with PRL/Br on the specific activities of caudal and cranial prostatic cellular enzymes involved in carbohydrate metabolism in castrated mature bonnet monkeys have been studied. Castration decreased all the enzymes studied such as hexokinase (HK), 6-phosphofructokinase (6-PFK), glyceraldehyde-3-phosphate dehydrogenase (G-3-PD), pyruvate kinase (PK), glucose-6-phosphate dehydrogenase (G-6-PD) and 6-phosphogluconate dehydrogenase (6-PGD) in the cranial and caudal prostates. PRL elevated the activities of all the enzymes above normal except G-3-PD of cranial lobe. In the caudal lobe, PRL brought back the activities of HK, PFK, PK, G-6-PD to normal and 6-PGD above normal except G-3-PD. TP/DHT treatment increased all the enzymes in both the lobes. PRL given along with TP/DHT further enhanced the androgen action with regard to HK, PK, G-6-PD and 6-PGD of cranial and PFK, G-3-PD, PK, G-6-PD and 6-PGD of caudal lobe. Br treatment did not produce any alteration of these enzymes in both the lobes. In the cranial lobe, during Br+TP/DHT treatment, the stimulating effects of androgen were unaffected on all the enzymes except PK. On the other hand in the caudal, the stimulatory effects of androgens were affected and the activities of HK, PFK, PK and 6-PGD were significantly decreased. The present results suggest that PRL has a direct as well as a synergistic action with androgens on enzymes of EMP and HMP shunt in the prostates of monkeys.  相似文献   

7.
During a screening for novel microbial trehalose phosphorylase three Pichia strains were identified as producers of this particular enzyme that have not yet been described. To our knowledge, this is the first time that this enzyme activity has been shown in yeasts. Pichia fermentans formed trehalose phosphorylase when cultivated on a growth medium containing easily metabolizable sugers such as glucose. Addition of NaCl (0.4 M) to the medium increased the synthesis of the enzyme significantly. Production of trehalose phosphorylase was found to be growth-associated with a maximum of activity formed at the transition of the exponential to the stationary phase of growth. Trehalose phosphorylase catalyzes the phosphorolytic cleavage of trehalose, yielding glucose 1-phosphate (glucose-1-P) and glucose as products. In vitro the enzyme readily catalyzes the reverse reaction, the synthesis of trehalose from glucose and glucose-1-P. For this reaction, the enzyme of P. fermentans was found to utilize -glucose-1-P preferentially. A partially purified enzyme preparation showed a pH optimum of 6.3 for the synthesis of trehalose. The enzyme was found to be rather unstable; it was easily inactivated by dilution unless Ca2+ or Mn2+ were added. This instability is presumably caused by dissociation of the enzyme. In contrast to other yeasts, P. fermentans rapidly degraded intracellularly accumulated trehalose when the carbon source in the medium was depleted. Trehalose phosphorylase seems to be a key enzyme in the degradative pathway of trehalose in P. fermentans. Additional enzymes in this catabolic pathway of trehalose include phosphoglucomutase, glucose-6-phosphate dehydrogenase, and gluconolactonase.This contribution is part of the Ph.D. thesis of Ingrid Schick  相似文献   

8.
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose.  相似文献   

9.
Summary Using a mathematical model of carbohydrate metabolism in Dictyostelium discoideum, the kinetic expressions describing the activities of glucokinase and glucose-6-P phosphatase have been analyzed. The constraints on the kinetic mechanisms and relative activities of these two enzymes were investigated by comparing computer simulations to experimental data. The results indicated that, (1) glucose-6-P is compartmentalized with respect to the enzymes involved in glucose-6-P, trehalose and glycogen metabolism, (2) a differences of approximately 0.6 mm/min in maximum specific activity of glucokinase compared to glucose-6-P phosphatase is required in order for the model to produce end product carbohydrate levels consistent with those observed experimentally, (3) the Km of glucokinase for glucose strongly influences the steady state levels of glucose in the absence of external glucose, and (4) changing the order of product removal in the reaction catalyzed by glucose-6-P phosphatase influences the level of glycogen and trehalose.  相似文献   

10.
It is currently thought that most flowering plants lack the capacity to synthesize trehalose, a common disaccharide of bacteria, fungi and invertebrates that appears to play a major role in desiccation tolerance. Attempts have therefore been made to render plants more drought-resistant by the expression of microbial genes for trehalose synthesis. It is demonstrated here that Arabidopsis thaliana itself possesses genes for at least one of the enzymes required for trehalose synthesis, trehalose-6-phosphate phosphatase. The yeast tps2 mutant, which lacks this enzyme, is heat-sensitive, and Arabidopsis cDNA able to complement this effect has been screened for. Half of the yeast transformants that grew at 38.6°C were also able to produce trehalose. All of these expressed one of two Arabidopsis cDNA, either AtTPPA or AtTPPB, which are both homologous to the C-terminal part of the yeast TPS2 gene and other microbial trehalose-6-phosphate phosphatases. Yeast tps2 mutants expressing AtTPPA or AtTPPB contained trehalose-6-phosphate phosphatase activity that could be measured both in vivo and in vitro. The enzyme dephosphorylated trehalose-6-phosphate but not glucose-6-phosphate or sucrose-6-phosphate. Both genes are expressed in flowers and young developing tissue of Arabidopsis. The finding of these novel Arabidopsis genes for trehalose-6-phosphate phosphatase strongly indicates that a pathway for trehalose biosynthesis exists in plants.  相似文献   

11.
Protoplasts were isolated from fruit-bodies ofAgaricus bisporus, and highest yields were derived from basidia. When gill fragments were treated with a combination of Novozyme 234, chitinase, and cellulase Onozuka R-10, and with 0.35m KCl as the osmotic stabilizer, high yields (3–4×107 protoplasts/g fresh wt gills) were obtained within 1 h of incubation. About 20–30% of protoplasts regenerated in a solid MMNC medium. Investigation of specific activities of glucose-6-phosphate dehydrogenase and mannitol dehydrogenase indicated a highly active pentose phosphate pathway and a good capacity for mannitol synthesis in protoplasts, as well as in other cells of fruit-bodies of the species. The simple and efficient procedure provides a new approach for further investigation of the mushroom, and possibly of other basidiomycetes with hemiangiocarpus, by use of protoplasts.  相似文献   

12.
The mannitol cycle has been verified in a unicellular red alga (Rhodellophyceae) for the first time. All four enzymes involved in the cycle (mannitol-1-phosphate dehydrogenase, Mt1PDH: EC 1.1.1.17; mannitol-1-phosphatase, Mt1Pase: EC 3.1.3.22; mannitol dehydrogenase, MtDH: 1.1.1.67; hexokinase, HK: 2.7.1.1.) were detected and characterized in crude algal extracts from Dixoniella grisea. These enzymes, with the exception of Mt1Pase, were specific to their corresponding substrates and nucleotides. The activities of enzymes in the anabolic pathway (fructose-6-P reduction by Mt1PDH and mannitol-6-P reduction by Mt1Pase) were at least 2- to 4-fold greater than those of the catabolic pathway (mannitol oxidation by MtDH and fructose oxidation by HK). There appears to be, therefore, a net carbon flow in D. grisea towards a high intracellular mannitol pool. The mannitol cycle guarantees a rapid accumulation or degradation of mannitol within algal cells in response to changing salinity in natural habitats. Moreover, the demonstration of the mannitol cycle within the Rhodellophyceae provides evidence that this metabolic pathway is of ancient origin in the red algal lineage.  相似文献   

13.
Addition of sodium nitrate to growing cultures ofAspergillus parasiticus (ATCC 36537) induces the synthesis of enzymes involved in nitrate assimilation (NO 3 reductase), of enzymes in the pentose pathway (glucose-6-phosphate dehydrogenase), and of enzymes in the mannitol cycle (mannitol- and mannitol-1-phosphate dehydrogenases). Addition of NO 3 also causes a dose-dependent suppression of synthesis of the polyketide secondary metabolite, versicolorin A. We suggest that in the presence of NO 3 plus peptone, the cytoplasmic NADPH/NADP ratio may be elevated, resulting in increased conversion of malonyl coenzyme A to fatty acid rather than to polyketide.  相似文献   

14.
Histochemical studies have been conducted by applying hexokinase (HK), aldolase (AD), glyceraldehyde-3-phosphate dehydrogenase (G3), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), and thiamine pyrophosphatase (TPPase) methods, as well as Nissl staining and Gomori's chrome-alum-hematoxylin-phloxine (CHP) methods to intercalated neurons of the supraoptic nucleus (SO) on Wistar strain rats. Intercalated neurons reacted weakly to the AD, G3, G6PD, and SDH tests, indicating that they belong to the category of ordinary neurons with low carbohydrate metabolism. Many fibrous astrocytes showing strong HK reactions surround neurosecretory neurons. However, they do not surround intercalated neurons with mild HK activity. These results indicate that the latter receive a poor supply of energy from glucose in the circulating blood in contrast to the former. Intercalated neurons are very rich in Nissl substance but lack CHP-positive material. They may have a high potential for synthesizing protein. The principal morphological features of the TPPase-positive Golgi material are peculiar and heterogeneous shape and poor development. These findings together with mild G6PD activity suggest that intercalated neurons are very likely to have poor synthesizing activity.  相似文献   

15.
Several enzymes were assayed in extracts from mycelium-colonised compost during growth and fruiting of Agaricus bisporus (Lange) Imbach. Comparison of changes of enzyme levels in axenic and nonaxenic cultures and in cultures of non-fruiting strains indicated that they were associated directly with the fungal mycelium. Large changes were found in the amounts of laccase and cellulase which were correlated with fruit body development. Laccase concentration increased during mycelial growth and then declined rapidly at the start of fruiting. Cellulase activity could be detected throughout growth but increased at fruiting. No such changes were observed in xylanase, alkaline protease, laminarinase and acid and alkaline phosphatases. Activities of laccase and cellulase were measured in axenic cultures arrested at various stages of fruiting development. Such cultures showed that the changes in concentration of laccase and cellulase were associated with the enlargement of fruit bodies.  相似文献   

16.
松针瘿蚊越冬幼虫体内酶活性的时序变化   总被引:2,自引:0,他引:2  
李毅平  龚和  朴镐用 《昆虫学报》2000,43(3):227-232
昆虫的越冬耐寒过程与糖酵解、磷酸己糖途径和抗冻保护性物质合成等一些中间代谢有关的酶有关。该文对松针瘿蚊Thecodiplosis japonensis老熟幼虫1998/1999越冬期间体内上述代谢酶活性的变化进行了研究。越冬期间体内糖原磷酸化酶活性明显地增加,糖酵解有关的酶(己糖激酶、乳酸脱氢酶和醛缩酶)活性较低,以保证更多的碳源(糖原)转化成海藻糖。越冬期间,体内葡萄糖-6-磷酸脱氢酶活性增高所产生的还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH),可为细胞在亚低温状态下发挥正常功能以及体内抗冻保护性物质的合成提供还原动力,同时通过调节体内海藻糖酶活性来维持越冬期间较高含量的海藻糖和移除春季体内累积的过多的海藻糖。  相似文献   

17.
Zusammenfassung Zellfreie Extrakte aus Fruchtkörpern von Agaricus bisporus katalysieren eine NADPH-abhängige Reduktion freier Fructose zu Mannitol. In vivo werden neben diesem Zucker auch andere Monosen in den Hexit eingebaut; die entsprechenden Inkorporationsraten sind jedoch gering (für Mannose 11%, Glucose 7% und Xylose 2%, bezogen auf diejenige von Fructose = 100%). Auch die Mannitolbildung aus Glucose erfolgt über Fructose als Zwischenprodukt, und ein alternativer Syntheseweg, Reduktion von Glucose zu Sorbitol und dessen Epimerisierung zu Mannitol beinhaltend, scheint nicht realisiert zu werden, obschon es gelang, Spuren von Sorbitol gaschromatographisch nachzuweisen. Im Kulturchampignon ist demnach freie Fructose als obligater Präkursor von Mannitol zu betrachten.Die experimentellen Resultate werden im Zusammenhang mit unseren gegenwärtigen Kenntnissen über den Kohlenhydratstoffwechsel von A. bisporus diskutiert.
Biosynthesis of mannitol in Agaricus bisporus
Summary In cell-free extracts of fruiting bodies of A. bisporus mannitol is shown to be synthesized by a NADPH-dependent reduction of free fructose. In vivo other monoses are also incorporated into the mannitol skeleton, but to a much lesser extent. Formation of this hexitol from glucose proceeds through fructose as an intermediate, whereas mannitol synthesis by a pathway involving reduction of glucose to sorbitol and epimerization of the latter to the polyol in question does not seem to occur, although it was shown that sorbitol exists in the common mushroom. Therefore, fructose would appear to be the obligate precursor of mannitol in this fungus. The experimental results are integrated into the picture of our present knowledge of carbohydrate metabolism in A. bisporus.
  相似文献   

18.
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.  相似文献   

19.
A cosmid carrying the orIA gene from Aspergillus nidulans was identified by complementation of an orlA1 mutant strain with DNA from the pKBY2 cosmid library. An orlA1 complementing fragment from the cosmid was sequenced. orlA encodes a predicted polypeptide of 227 amino acids (26 360 Da) that is homologous to a 211-amino-acid domain from the polypeptide encoded by the Saccharomyces cerevisiae TPS2 gene and to almost the entire Escherichia coli of otsB-encoded polypeptide. TPS2 and otsB each specify a trehalose-6-phosphate phosphatase, an enzyme that is necessary for trehalose synthesis. orlA disruptants accumulate trehalose-6-phosphate and have reduced trehalose-6-phosphatate phosphatase levels, indicating that the gene encodes a tre-halose-6-phosphatate phosphatase. Disruptants have a nearly-wild-type morphology at 32°C. When germinated at 42°C, the conidia and hyphae from disruptants are chitin deficient, swell excessively, and lyse. The lysis is almost completely remedied by osmotic stabilizers and is partially remedied by N-acetylglucosamine (GlcNAc). The activity of glutamine:fructose-6-phosphate amido-transferase (GFAT), the first enzyme unique to aminosugar synthesis, is reduced and is labile in orIA disruption strains. The findings are consistent with the hypothesis that trehalose-6-phosphate reduces the temperature stability of GFAT and other enzymes of chitin metabolism at elevated temperatures. The results extend to filamentous organisms the observation that mutations in fungal trehalose synthesis are highly pleiotropic and affect aspects of carbohydrate metabolism that are not directly related to trehalose synthesis.  相似文献   

20.
A growth trial was conducted on juvenile mirror carp (Cyprinus carpio L.) for 8 weeks to compare the efficacy of three chromium (Cr) compounds (Cr chloride, Cr picolinate, and Cr yeast) at a level 0.5 mg/kg as a potential growth enhancer. In addition, a high level of Cr (2.0 mg/kg) as Cr chloride has also been added in parallel for comparison. All Cr fortified diets at a level 0.5 mg/kg produced superior growth for carp compared to the control group and the group fed the high level of Cr chloride (2.0 mg/kg). Metabolic indicators measured included two of the key liver enzymes (hexokinase, HK) and (glucose-6-phosphate dehydrogenase, G6PD) activity. The results validated the positive effect of Cr at a level 0.5 mg/kg on enzyme activity and carbohydrate utilization producing significantly better growth performance for mirror carp. The study also included measurement of DNA strand breaks in the erythrocytes using the comet assay which revealed significantly (P < 0.05) increased DNA damage in fish fed on high level of Cr chloride (2.0 mg/kg) but the other treatments were not significantly different (P > 0.05) from the control groups. The concentration of Cr in the liver, gut, and whole fish tissues increased with increasing dietary Cr supplementation. Overall, Cr supplementation at a level 0.5 mg/kg from different sources may affect growth performance in carp by activation of some key liver enzymes (HK and G6PD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号