首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraneuronal Site of Action for Imipramine in Rat Striatal Slices   总被引:2,自引:2,他引:0  
: The uptake of 3H-labeled imipramine ([3H]IMI) in rat corpus striatum slices was found to be strongly temperature-dependent. The accumulation was shown to be saturable and two apparent Km's were found: 2.2 × 10?8 and 3.5 × 10?7m . Once incorporated, the labeled drug was released from superfused slices by K+ (55 mm ) depolarization in the presence of calcium ions. Imipramine was also studied for its ability to induce the release of [3H]dopamine ([3H]DA) which had been previously accumulated by striatal slices. It was found that striatal slices superfused during 1 or 6 min with imipramine (10?6-10?4m ) release substantial amounts of radioactive dopamine, independently of the presence of Ca2+ in the medium. This release is completely abolished after reserpine pretreatment. It is proposed that imipramine enters the dopaminergic storage vesicles and displaces dopamine. An intraneuronal mechanism of action for imipramine is discussed.  相似文献   

2.
In this study we investigated the role of external monovalent cations, and of intracellular Ca2+ concentration ([Ca2+]i) in polarized and depolarized rat cerebral cortex synaptosomes on the release of [3H]--aminobutyric acid (3H-GABA). We found that potassium-depolarization, in the absence of Ca2+, of synaptosomes loaded with3H-GABA releases 7.4±2.1% of the accumulated neurotransmitter, provided that the external medium contains Na+, and an additional 19.0±2.5% is released upon adding 1.0 mM CaCl2 to the exterior. The Ca2+-independent release component does not occur in a choline medium and it is only 3.4±0.8% of the3H-GABA accumulated in a Li+ medium, but both ions support the Ca2+-dependent release of3H-GABA (13.4±0.6% in choline and 15.4±1.5% in Li+), which suggests that the exocytotic release is independent of the external monovalent cation present, whereas the carrier-mediated release specifically requires Na+ outside. Furthermore, previous release of the cytosolic3H-GABA due to predepolarization in the absence of Ca2+ does not influence the amount of3H-GABA subsequently released by exocytosis due to Ca2+ addition (19.1±2.5% or 19.1±1.1%, respectively). In choline or Li+ medium, the value of the [Ca2+]i is raised by Na+/Ca2+ exchange to 663±75 nM or 782±54 nM, respectively, within three minutes after adding 1.0 mM Ca2+, in the absence of depolarization, and parallel release experiments show no release of3H-GABA in the choline medium, but a substantial release (7.1±2.1%) of3H-GABA occurs in the Li+ medium without depolarization. Subsequent K+-depolarization shows normal Ca2+-dependent release of3H-GABA in the choline medium (14.1±2.0%) but only 8.6±1.1% release in the Li+ medium, which suggests that raising the [Ca2+]i by Na+/Ca2+ exchange, without depolarization, supports some exocytotic release in Li+, but not in choline media. The role of [Ca2+]i and of membrane depolarization in the release process is discussed on the basis of the results obtained and other relevant observations which suggest that both Ca2+ and depolarization are essential for optimal exocytotic release of GABA.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

3.
The release of [3H]GABA which is newly synthesized from [3H]l-glutamic acid (GLU) has been examined using striatal slices obtained from the rat brain. It was found that 8–10% of [3H]GLU transported was converted to [3H]GABA during the incubation of striatal slices in the presence of nipecotic acid (5 × 10?5 M). Nipecotic acid was added to the medium in order to prevent possible reuptake of [3H]GABA released during its synthesis, and it was found to have no significant effect on the formation of [3H]GABA from [3H]GLU as well as on the uptake of [3H]GLU. The application of high potassium (60 mM) stimulation exhibited a significant enhancement of the release of this newly synthesized [3H]GABA in a Ca2+ dependent manner. Kinetic analysis revealed that the evoked release of newly synthesized [3H]GABA was approximately two times greater than that of previously-loaded [3H]GABA, whereas no significant difference was observed in the spontaneous release. An immobilization stress in water failed to affect the release of newly synthesized [3H]GABA from striatal slices despite the occurrence of a significant enhancement of GABA formation in this structure.These results suggest that newly synthesized GABA may be preferentially released from its nerve terminals in response to the excitation of neurons at least in the striatum as compared with previously accumulated GABA.  相似文献   

4.
Discharge of protein from slices of rat exorbital lacrimal gland was stimulated by 10?5 M carbachol. This response was blocked by 10?4 M atropine or by the omission of extracellular calcium. In the latter case, secretion could be restored by the reintroduction of calcium to the medium. Carbachol (10?5 M) also stimulated the release of 86Rb (a marker for potassium) from the slices. This effect was completely blocked by 10?4 M atropine. The initial transient release of 86Rb was only partially inhibited by Ca removal, but the later sustained phase of release was completely blocked. As with protein secretion, this effect of Ca removal could be reversed by re-introduction of Ca to the medium. It is concluded that activation of cholinergic receptors in the lacrimal gland stimulates protein discharge and increases potassium permeability by mechanisms utilizing extracellular calcium ions.  相似文献   

5.
The effects of D1 and D2 dopaminergic agonists and antagonists on the electrically-evoked release of gamma-[3H] aminobutyric acid (3H-GABA) have been studied on rat prefrontal cortex slices. The major part of the electrically-evoked release of 3H-GABA appeared to be Ca++ dependent since a 62% decrease was observed when calcium was removed from the superfusion medium. Two specific D2 dopaminergic agonists, RU 24926 (10(-7) M) and lisuride (10(-6) M), respectively induced a 32% and a 50% inhibition of the electrically-evoked release of 3H-GABA. The selective D2 dopaminergic antagonists sulpiride (10(-5) M) totally abolished the effect of RU 24926 and partially abolished the effect of lisuride. The selective D1 agonist SKF 38393 (10(-5) M) did not affect 3H-GABA release. These results suggest that in the rat prefrontal cortex in vitro, the dopaminergic modulation of 3H-GABA release is mediated through D2 but not D1 receptors. The activation of D2 dopaminergic receptors induces an inhibition of the electrically-evoked release of 3H-GABA.  相似文献   

6.
A superfusion system was used to study the effects of neuroexcitatory amino acids upon spontaneous and depolarization-evoked release of exogenously taken up and newly synthesized [3H]dopamine by rat striatal slices. Neither l-glutamate nor other aminoacids such as l-aspartate and d-glutamate (5 × 10?5 M) modified the spontaneous release of exogenous [3H]dopamine from rat striatal slices. In contrast, these neuroexcitatory aminoacids did potentiate spontaneous release of striatal [3H]dopamine newly synthesized from [3H]tyrosine. A different pattern of effects emerged when depolarization-evoked release of dopamine was studied. Only l-glutamate (5 × 10?6-1 × 10?4 M) potentiated dopamine release under these experimental conditions in a rather specific and stereoselective manner. In addition, similar results were obtained regardless of whether depolarization-induced release of exogenous or newly synthesized [3H]dopamine was studied. The effect of l-glutamate on depolarization-induced release depended both upon the degree of neuronal depolarization and upon the presence of external Ca2+ in the superfusion medium and it was blocked by l-glutamate diethylester. Furthermore, this effect of l-glutamate seemed quite specific with regard to regional localization within the brain as it was only demonstrated in slices from striatum and not in slices from olfactory tubercle or hippocampus. It is suggested that during depolarization a Ca2+-dependent event occurs at the striatal membrane level which changes the sensitivity of the dopamine release process to neuroexcitatory aminoacids in such a way as to render it relatively more specific and stereoselective towards l-glutamate stimulation. The findings reported have led us to propose that l-glutamic acid could play a role as a neuromodulator of dopaminergic transmission in the rat corpus striatum.  相似文献   

7.
The release of [3H]GABA induced by elevated extracellular potassium (K)o, from thin rat brain cortex slices, has been compared with that of [3H]noradrenaline ([3H]NA), released by the same procedures, both from normal slices, and from slices pre-treated with reserpine and nialamide, [3H]NA being predominantly a vesicular component in the former situation, and a soluble substance in the latter one. 46 mM-(K)o released considerably more [3H]NA from normal than from drug-treated slices, while the release of GABA was about two thirds of the latter. When 4min ‘pulses’ of increasing concentrations of potassium were applied, it was observed that the release of GABA and of [3H]NA from drug-treated slices increased in proportion to (K)o, up to 36-46 mM and then declined considerably with higher (K)o. The dependency of potassium-induced release on the concentration of calcium in the medium, indicated that release of [3H]NA from normal slices was proportional to calcium up to 1.5-2 mM, while that of [3H]NA from drug-treated slices increased up to 0.5 mM-Calcium, and then declined with higher concentrations. GABA release also increased up to 0.5 mM-calcium, but no further changes were observed at higher concentrations. The calcium antagonist D-600 inhibited high (K)o-induced release of [3H]NA from normal slices to a greater extent than that of [3H]GABA or of [3H]NA from drug-treated slices. These results, in which elevated (K)o-induced release of [3H]GABA resembles considerably that of soluble NA, but differs from that of NA present in synaptic vesicles, suggest that release of [3H]GABA also occurs from the soluble cytoplasmic compartment, and that the partial calcium requirement that is found is unrelated to that of transmitter secretion. These findings are also a further indication of the lack of specificity of elevated (K)o as a stimulus for inducing transmitter secretions.  相似文献   

8.
It has been proposed that the major portion of [3H]GABA released from rat cortical slices upon exposure to high K+ comes from a neuronal pool. Using carrier mediated exchange diffusion of DABA or β-alanine in the superfusion medium for GABA in the slice as a technique for manipulating neuronal and glial pools of GABA, it was found that DABA but not β-alanine substantially reduced the K+ stimulated release of [3H]GABA. The present study using synaptosomes as an in vitro model of the nerve ending was undertaken to ascertain whether this neuronal pool of releasable [3H]GABA was associated with a specific transmitter pool in nerve endings. A continuous superfusion system employing a Ca2+ pulse to produce a calcium coupled release (Levy et al, 1973) was used to study the effect of two concentrations (20 μm , 1 mm ) of DABA and β-alanine on the release of [3H]GABA from synaptosomes. In contrast to the results in slices, DABA at both concentrations had no effect on the release of [3H]GABA from synaptosomes in spite of evidence that exchange diffusion was occurring. With protoveratrine as the releasing agent there was no effect of DABA on the release of [3H]GABA from either slices or synaptosomes. The results suggest that the major portion of [3H]GABA released from cortical slices by high K+ comes from a non-transmitter pool in the neuron. Use of K+ stimulated release of amino acids from cortical slices as a criterion for neurotransmitter function must be viewed with caution.  相似文献   

9.
The effects of three D2 dopaminergic agonists on the spontaneous release of 3H-GABA have been studied on rat prefrontal cortical slices. LY171555 (10(-9) M), RU24926 (3 x 10(-8) M) and lisuride (10(-7) M) respectively enhanced the spontaneous release by 25, 20.5 and 23%. These effects were totally reversed by the D2 antagonist sulpiride (10(-5) M). Furthermore, subliminar concentration of RU24926 (10(-9) M) and of the D1 agonist SKF38393 (10(-6) M) induced a clear enhancement of the spontaneous release of 3H-GABA when they were superfused simultaneously. Our results suggest that in the prefrontal cortex, the spontaneous release of 3H-GABA is under an activatory D2 dopaminergic control. The activation of D1 receptors seems to have an enabling effect on this regulation.  相似文献   

10.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

11.
Release of [3H]serotonin from brain slices   总被引:2,自引:0,他引:2  
1. Labelled serotonin ([3H]5-HT) accumulated by slices of rat brain either in vivo or in vitro is released by depolarizing procedures such as electrical stimulation or high external potassium concentrations. Electrical stimulation predominantly affects the liberation of the unchanged amine, rather than of its principal metabolite, 5-HIAA. 2. Release of [3H]5-HT does not appear to be calcium-dependent. 3. Amount of release parallels the density of serotonin-containing nerve terminals in each of several cerebral regions tested. Release from several extracerebral tissues was similar to that obtained from cerebral tissues having relatively little endogenous 5-HT. 4. Electrically induced release of [3H]5-HT is markedly inhibited by desipramine, chlorpromazine, LSD, lithium and ouabain.  相似文献   

12.
T C Westfall 《Life sciences》1974,14(9):1641-1652
The effect of acetylcholine (ACh) on the release of 3H-norepinephrine (NE) from the cerebellum and 3H-dopamine (DA) from the striatum following the administration of potassium chloride or electrical field stimulation was studied in superfused brain slices. ACh in conc. of 10?6 and 10?5M significantly inhibited the release of 3H-NE from cerebellar slices and 3H-DA from striatal slices following 2 min infusion of 50mM potassium chloride. In addition ACh produced a dose-dependent inhibition of the release of 3H-DA from striatal slices following electrical stimulation. The results obtained in the present study are quite consistent with the concept that a muscarinic inhibitory mechanism may be operative on noradrenergic and dopaminergic neurons in the brain.  相似文献   

13.
Rat striatal slices were continuously superfused with 3H-tyrosine to study the effect of a low concentration of nicotine on the spontaneous release of newly synthesized 3H-dopamine (3H-DA). Nicotine (10?6M) stimulated the calcium-dependent spontaneous release of 3H-DA. This effect was prevented by nicotinic blockers such as pempidine (10?5M) and d-tubocurarine (5×10?6M). The stimulatory effect of nicotine and its blockade by pempidine were still observed in the presence of tetrodotoxin (5×10?7M). This demonstrates for the first time that a low concentration of nicotine is effective in releasing DA by acting on presynaptic nicotinic receptors located on terminals of the nigro-striatal dopaminergic neurons.  相似文献   

14.
Methionine-enkephalin at low concentrations (10?12 ? 10?6M) inhibited K+-stimulated release of preloaded 3H-GABA from rat brain synaptosomes in a dose-dependent fashion. This inhibition was prevented by naloxone. High affinity GABA uptake was not affected by enkephalin in this concentration range.  相似文献   

15.
Slices of mammalian brain accumulate amino acids contained in physiological medium. When such tissues were subjected to mild electrical stimulation of short duraation capable of depolarizing neural membranes, there occurred a striking increase in the efflux of exogenous amino acids. The effects on representative acidic, neutral, and basic amino acids were similar. Elevated levels of potassium chloride evoked release of amino acids comparable to electrical stimulation. Electrically stimulated release of [3H]γ-aminobutyric acid was not inhibited by the presence of reduced concentrations of calcium ions. Although amino acids are actively accumulated by liver and kidney slices, electrical stimulation of these tissues failed to release these compounds. Stimulation-induced release was significantly diminished by the presence of small amounts of lithium in the perfusing medium.  相似文献   

16.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

17.
γ-AMINOBUTYRIC acid (GABA) is present in all layers of vertebrate retinae1–3: in the rabbit retina it seems to be most concentrated in the ganglion cell layers2 while in the frog it is concentrated primarily in cell layers which are rich in amacrine cells1. Recent autoradiographic studies of the distribution of 3H-GABA in rat brain slices after incubation in vitro suggest that the labelled amino-acid is selectively concentrated by certain neural elements4,5. In a study of the distribution of 3H-GABA in rabbit retina after injection of the labelled amino-acid into the eye, Ehinger6 found that radioactivity was accumulated principally in the inner plexiform, inner nuclear and ganglion cell and nerve fibre layers. Labelling was also concentrated in some cells occupying the same position as amacrine cells and in some nerve cells of the ganglion cell layer.  相似文献   

18.
Rat brain synaptosomes preincubated with [3H]5-HT. were further incubated and the release of [3H]5-HT from the preparation was studied. The spontaneous release consisted of an initial rapid phase followed by slower release. Incubation with 60 mM-KCl increased the release while 60 mw-NaCl did not affect it. The effect of KG was abolished when NaCl was omitted from the medium. The potassium-induced release was Ca2+ -dependent while that induced by tyramine (10?5-10?4M) and the spontaneous release did not depend on Ca2+. Vinblastine (10?5–2.5 X 10?4 M) caused an increase in the spontaneous release and an decrease in the potassium-induced release, while it completely inhibited the release by tyramine at 2.5 X 10?4 M. Colchicine (5 X 10?5–10?3M) and cytochalasin D (10?5, 10?4 M) failed to produce any change in the release. Cytochalasin B (10?5, 10?4M) increased the spontaneous release and decreased the potassium-induced release but it did not affect the release by tyramine. Colchicine (10?3 M). vinblastine (10?4 M) and cytochalasin B (10?4 M) did not affect significantly Na+.K+-. Mg2- and Ca2+ -ATPase activities. These results suggest that none of microtubules. microfilaments and contractile protein participates in the mechanism of [3H]5-HT release from synaptosomes, in vitro.  相似文献   

19.
It has been shown in experiments on rat cortex slices preincubated with 3H-GABA that chlorodiazepoxide (10(-6), 3.10(-5) M) does not change basal and electric stimulation-induced release of the label. It has been also shown that it does not eliminate the autoinhibitory effect of GABA on electric stimulation-induced release of 3H-GABA. However, harmane and some other (but not all) derivatives given at the same concentrations increase 3H-GABA release induced by electric stimulation and abolish the inhibitory effect of GABA without changing or slightly raising spontaneous release of 3H-GABA. It is concluded that harmane enhances the electrically stimulated release of the transmitter by GABAergic axons whatever the effect on benzodiazepine-binding areas of GABA receptors.  相似文献   

20.
Calcium binding by subcellular fractions of bovine adrenal medulla   总被引:2,自引:0,他引:2  
Significantly more calcium per gram protein was found in a relatively pure granule fraction isolated from fresh bovine adrenal medulla than in predominantly mitochondrial fractions isolated from the same tissue. Sixty-four and 55% of the calcium associated with chromaffin granule and mitochondrial fractions, respectively, was released into the supernatant upon lowering the tonicity of the medium. The per cent calcium released by this procedure was significantly greater for granules than for mitochondria (p < 0.05). The amount of calcium per gram protein released into the supernatant also was greater in granule fractions than in mitochondrial fractions (p < 0.05). These data, coupled with a previous report that 10?3 M EDTA does not markedly decrease the calcium content of whole granules, indicate that the excess calcium of the granule fractions relative to the mitochondrial fractions is maintained within the particles of that fraction. The functional significance of the relatively large amount of calcium in chromaffin granules is not clear. The presence of 150 mM sodium chloride or potassium chloride decreases calcium binding by granule or mitochondrial fragments incubated in 2.2 mM calcium chloride in 0.2 M Tris, pH 7, by about 50%. EDTA, 10?3 M, removes all but a small residual of the calcium associated with the granule or mitochondrial fragments whereas lowering the concentration of Tris increases calcium binding to about the same extent in both these subcellular fractions. The calcium-binding properties of granule and mitochondrial fragments therefore appear to be quantitatively and qualitatively similar. Inhibition of catecholamine release by relatively high concentrations of sodium may be explained by competitive inhibition of calcium binding. Calcium binding by granule fragments decreases with an increase in hydrogen ion concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号