首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 30-min intravenous infusions of ethanol (about 50 mm blood concentration), acetaldehyde (about 100 μm blood concentration), and acetate (equimolar dose to acetaldehyde) were studied in normal and adrenalectomized rats. Blood glucose, plasma free fatty acids (FFA), plasma immunoreactive insulin, and glucagon and hepatic glycogen concentrations were measured. Ethanol itself in the presence of 4-methylpyrazole (4-MP) produced no marked changes in the parameters measured. Its infusion without 4-MP reduced plasma insulin by 35% in the normal rats, but not in the adrenalectomized rats, with no simultaneous changes in blood glucose. Acetaldehyde infusion produced hyperglycemia and relatively slight hyperinsulinemia in the normal rats, but not in the adrenalectomized rats. Equimolar acetate was not as potent a stimulator of glycogenolysis as acetaldehyde. Plasma FFA concentrations were markedly reduced by ethanol (without 4-MP), acetaldehyde and acetate both in the normal and adrenalectomized rats, but in the presence of 4-MP ethanol was without effect. The results indicate that metabolites of ethanol (mostly acetaldehyde) produced during ethanol oxidation in vivo are responsible for the stimulation of glycogenolysis through the release of catecholamines from the adrenal glands. The ethanol-induced decrease in plasma FFA is also attributable to the metabolites of ethanol, acetaldehyde having a more potent depressing action than acetate. The mode of inhibition of lipolysis is not related to hormonal factors.  相似文献   

2.
The plasma insulin and blood glucose responses to synthetic 1-24 ACTH were studied in 21 patients bilaterally adrenalectomized for pituitary-dependent Cushing's syndrome and in 8 healthy adults. In the adrenalectomized patients, intravenous 1-24 ACTH administration was followed by an increase in plasma insulin concentrations after 15 and 30 min and a fall in blood glucose after 30 min. In healthy subjects no significant changes in plasma insulin and blood glucose levels were found. The presence of intact adrenals seems to be the cause of the different responses of insulin to 1-24 ACTH injection in these two groups.  相似文献   

3.
Our objective was to determine if a cafeteria-type diet with increased fat content would block the decrease in insulin secretion induced by adrenalectomy in obese rats. Five week old Zucker (fa/fa) rats were adrenalectomized. One week later, half of the adrenalectomized groups, and age-matched, sham-operated animals were given a diet of 16% fat and 44% carbohydrate. Control animals were maintained on standard rat chow (4.6% fat and 49% carbohydrate). After 4 weeks on the diets, in vivo measurements included caloric intake, weight gain, plasma corticosterone, triglyceride, free fatty acids, and oral glucose tolerance tests. In vitro measurements included glucose-stimulated insulin secretion, glucose phosphorylating activity, islet triglyceride content, and fatty acid oxidizing activity of cultured islets. Generally, the cafeteria diet did not block the effects of adrenalectomy on in vitro insulin secretion parameters, even though in sham-operated animals weight gain and insulin resistance was induced by the diet in vivo. Adrenalectomy and the diet exerted independent effects on glucose phosphorylation and fatty acid oxidation in islets. In conclusion, adrenalectomy decreased the elevated insulin secretion in fa/fa rats. The failure of a cafeteria diet enriched in fat to block the adrenalectomy-mediated changes in B-cell function indicates the importance of glucocorticoids and centrally-mediated effects on insulin secretion and other metabolic parameters.  相似文献   

4.
This study is aimed at elucidating the mechanism of paradoxical rise in plasma ACTH levels in response to glucocorticoids, observed by several authors in bilaterally adrenalectomized patients with Cushing's disease. Six control subjects and fourteen patients bilaterally adrenalectomized for Cushing's disease were given a dose of 200 mg hydrocortisone sodium succinate by 3-5 mm i.v. injection. Plasma ACTH (in 6 patients), serum cortisol, growth hormone (GH) and insulin and blood glucose levels were estimated at 0, 30, 60, 90, and 120 minutes. The administration of hydrocortisone significantly suppressed plasma ACTH levels only at 60 min. In one case a slight rise in ACTH level during the test was observed. A significant fall in blood glucose levels was found only in the adrenalectomized patients. No significant changes in serum insulin and GH levels were noted. The possible mechanisms are discussed, especially the potential role of transient glucose deficiency in the pathophysiology of plasma ACTH increase in response to hydrocortisone in the bilaterally adrenalectomized patients.  相似文献   

5.
The effect of insulin infusion in vivo on muscle protein synthesis was investigated in rats. In 10-days-streptozotocin-diabetic rats infused in vivo with amino acids and glucose, the rate of protein synthesis per unit of RNA (RNA activity) was markedly decreased. Pre-treatment with large doses of insulin at 17 and 1 h before the infusion fully restored RNA activity to normal. Infusion of insulin for 6 h with amino acids and glucose did not restore RNA activity to normal in the diabetic rats. However, in diabetic-adrenalectomized rats similar infusions of insulin fully restored RNA activity to normal. Measurements of plasma corticosterone concentrations indicated a 50% increase in the diabetic rats. Since pre-treatment with corticosterone suppressed the stimulatory effect of insulin infusion on RNA activity in adrenalectomized rats, and since corticosterone treatment for 6 days suppressed RNA activity even though insulin concentrations were elevated, it is suggested that increased concentrations of corticosterone are responsible for the lag in response to insulin in the diabetic rat. This means that the catabolic effects of glucocorticoids must be also considered together with the catabolic effect of insulin lack in diabetes.  相似文献   

6.
Livers from normal, adrenalectomized, and diabetic rats were perfused invitro in order to investigate the mode of action of insulin in the control of glycogenesis by glucose. Control of glycogen synthase and phosphorylase by glucose is completely lost in livers from 2 and 6 day alloxan diabetic rats. Three hour treatment of normal rats with anti-insulin serum results in a decrease in the effect of glucose on hepatic glycogenesis. Glucose infusion into isolated perfused livers from fed normal and adrenalectomized rats promotes an increase in glycogen synthase activation and phosphorylase inactivation. These data clearly demonstrate that the presence of insulin rather than glucocorticoids is an absolute requirement in the control of hepatic glycogen synthesis by glucose.  相似文献   

7.
Chi TC  Ho YJ  Chen WP  Chi TL  Lee SS  Cheng JT  Su MJ 《Life sciences》2007,80(20):1832-1838
Although serotonin, serotonin uptake inhibitors and serotonin precursors (including tryptophan or 5-hydroxytryptophan) are known to have hypoglycemic action in rodents or human, it is not clear whether serotonin has hypoglycemic effect in streptozotocin-induced diabetic rats (STZ-diabetic rats). The aim of this study was to investigate the action of serotonin in regulating the plasma glucose STZ-diabetic rats. Plasma glucose, insulin, beta-endorphin and adrenaline were assessed after intraperitoneal administration of serotonin. Serotonin produced hypoglycemic effects without altering plasma insulin and adrenaline levels but increasing beta-endorphin level in STZ-diabetic rats. The glycogen content in soleus muscle was increased at 90 min after application of serotonin (0.3 mg/kg) in STZ-diabetic rats. Dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT(7) receptor blocker) abolished the hypoglycemic effect of serotonin in STZ-diabetic rats. Serotonin-induced hypoglycemic effect in association with the increase of beta-endorphin release was abolished in bilaterally adrenalectomized STZ-diabetic rats. In isolated adrenal gland of STZ-diabetic rats, the increase of beta-endorphin secretion in response to serotonin was reduced by either dihydroergotamine or pimozide. Pretreatment with naloxone (1.0 mg/kg, i.p.) prevented serotonin-induced plasma glucose lowering effect in STZ-diabetic rats. The results demonstrated that serotonin may activate 5-HT(7) receptor on rat adrenal gland to enhance of beta-endorphin secretion, which then stimulates the opioid receptor to increase peripheral glucose utilization, resulting in decreased plasma glucose levels in STZ-diabetic rats.  相似文献   

8.
To investigate the effect of the increase in glucocorticoids during exercise on endurance, rats were either sham operated (SO) or adrenalectomized. All adrenalectomized rats were given a subcutaneously implanted corticosterone pellet at the time of adrenalectomy. Adrenalectomized rats were injected with corticosterone (ADX Cort) or corn oil (ADX) 5 min before exercise. Rats were killed at rest or after running on a treadmill (21 m/min, 15% grade) until exhaustion. SO rats ran 138 +/- 6 min compared with 114 +/- 9 min for ADX Cort and 89 +/- 8 min for ADX. All differences in run times were significant (P less than 0.05). Corticosterone levels were similar in exhausted SO and ADX Cort groups. ADX exhausted rats had corticosterone levels similar to resting values in SO and ADX rats. Inhibition of the rise in glucocorticoids during exercise had no effect on liver glycogen, liver adenosine 3',5'-cyclic monophosphate, plasma insulin, blood glucose, lactate, glycerol, or 3-hydroxybutyrate, plasma norepinephrine, or red quadriceps and soleus glycogen. Plasma free fatty acids were significantly depressed at exhaustion in ADX rats compared with SO. These data show that glucocorticoids exert effects within the time frame of a prolonged exercise bout and play a role in increasing endurance.  相似文献   

9.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   

10.
For years investigators have sought an assay for insulin which would combine virtually absolute specificity with a high degree of sensitivity, sufficiently exquisite for measurement of the minute insulin concentrations usually present in the circulation. Methods in use recently depend on the ability of insulin to exert an effect on the metabolism of glucose in vivo or in excised muscle or adipose tissue. Thus, the insulin concentration in plasma has been estimated: a) from the degree of hypoglycemia produced in hypophysectomized, adrenalectomized, alloxan-diabetic rats (1); b) from the augmentation of glucose uptake by isolated rat hemidiaphragm (2); or c) from the increased oxidation of glucose-1-C14 by the rat epididymal fat pad (3). Since there have been reports indicating the presence, in plasma, of inhibitors of insulin action (4) and of noninsulin substances capable of inducing an insulin-like effect (5,6), these procedures, while yielding interesting information regarding the effects of various plasmas on glucose metabolism in tissues, are of doubtful specificity for the measurement of insulin per se (5).  相似文献   

11.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

12.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

13.
To determine the importance of adrenal steroid in the effects of interleukin-1, we investigated changes in the number of islet cells reactive toward antiserum to insulin (anti-Ins) by intraperitoneal administration of recombinant human interleukin-1 beta (IL-1) in intact and adrenalectomized (ADX) rats. IL-1 significantly reduced serum insulin levels in ADX rats only, while it similarly decreased plasma glucose levels. In intact rats, IL-1 did not affect the number of islet cells reactive to anti-Ins, although cytoplasmic immunostaining tended to be reduced by IL-1 treatment. Only adrenalectomy decreased the number of islet cells immunostained by anti-Ins. Furthermore, IL-1 treatment significantly reduced the number of islet cells reactive to anti-Ins in ADX rats. The present study immunohistochemically supported our working hypothesis that the withdrawal of adrenal steroids by adrenalectomy enhances the islet cell sensitivity to exogenous administration of IL-1.  相似文献   

14.
A previous study in our laboratory showed that streptozotocin (STZ) induced diabetic, deoxycorticosterone acetate (DOCA) induced hypertensive rats exhibited significantly lower levels of plasma glucose than did normotensive diabetic animals. The present experiments further investigate the effects of DOCA treatment on fasting levels of plasma glucose and insulin and on their changes after oral glucose challenge in nondiabetic and STZ-diabetic rats. It was found that, in nondiabetic rats, DOCA-induced hypertension was associated with normal glucose levels and glucose tolerance but with significantly lower levels of plasma insulin. DOCA-treated diabetic animals showed significantly lower levels of plasma glucose, but their plasma insulin concentrations were not significantly different from those of the DOCA vehicle treated diabetic rats. DOCA-treated diabetic rats also had significantly higher plasma levels of cholesterol and triglycerides. It is suggested that DOCA may have a direct or indirect action on the assimilation, production, or utilization of glucose, perhaps leading to an improvement in insulin sensitivity and subsequently a decrease in insulin secretion.  相似文献   

15.
Plasma levels of prolactin, growth hormone, glucagon insulin and glucose were measured in non-treated control rats, bromocriptine-treated control rats and GH3-cell-tumor-bearing rats with and without bromocriptine treatment. Bromocriptine treatment increased plasma levels of glucagon, insulin and glucose in control rats. Tumor-bearing rats had increased body weight and increased plasma levels of prolactin, growth hormone, glucagon, insulin and glucose. Bromocriptine treatment reduced body weight and decreased the plasma levels of prolactin, glucagon and insulin, as compared to non-treated tumor-bearing rats. The drug had no effect on plasma levels of growth hormone and glucose. These results indicate that, in GH3-cell-tumor-bearing rats, prolactin, glucagon and insulin are more sensitive to the action of bromocriptine than growth hormone.  相似文献   

16.
Glucose-induced insulin secretion and B-cell ultrastructure were studied in islets obtained from normal, adrenalectomized, radiothyroidectomized, ovariectomized and orchidectomized rats. Both parameters were also studied in the same experimental groups submitted to specific substitutive therapy. Insulin secretion in response to high glucose was significantly diminished in adrenalectomized, hypothyroid and male castrated rats. Conversely, this secretion was enhanced in ovariectomized rats. These abnormal insulin responses were restored to normal range by specific substitutive therapy. B-cell ultrastructure was markedly altered in hypothyroid and in female and male castrated rats. No significant changes were observed in the adrenalectomized rats. No conspicuous alterations were depicted in the other islet cell populations. The features of the morphological alterations were mainly related to changes in the B-granules and the rough endoplasmic reticulum. Modifications of the other B-cell organelles were less frequent. In the castrated rats, a distinctive feature was the appearance of a finely granulated colloid material. These B-cell alterations, consecutive to changes in the circulating levels of a given hormone, seemed to depend on the chemical structure of the hormone itself rather than on the changes induced in the B-cell secretory function. The ultrastructural changes described were reversed, as in the case of insulin release, by specific substitutive therapy. It is concluded that changes in the circulating levels of the hormones studied are followed by specific alterations in both B-cell secretion and ultrastructure.  相似文献   

17.
Effect of adrenalectomy and exercise on skeletal muscle, heart and liver glycogen and triglycerides, blood glucose and plasma free fatty acid level has been studied in the rat. It has been found that exercise-induced mobilization of glycogen in vastus deepest and soleus was diminished whereas utilization of liver glycogen was accelerated in adrenalectomized rats as compared to sham-operated controls. Triglyceride content in vastus deepest was reduced and in the liver increased in control rats but remained stable during exercise in adrenalectomized rats. In the latter group hypoglycemia occurred earlier and was more pronounced, whereas plasma free fatty acid level was markedly lower than in the control group.  相似文献   

18.
The effects of administration of glucose orally and tolbutamide or arginine intravenously on insulin and glucagon secretion and blood glucose level were studied in normal and thiamine-deficient rats. In thiamine deficiency, insulin secretion and glucose tolerance were impaired during glucose ingestion. Tolbutamide decreased the blood glucose level in both control and thiamine-deficient rats but its stimulatory effect on insulin secretion was minimal in thiamine-deficient rats unlike the control animals. Arginine did not alter substantially the blood glucose or insulin in thiamine-deficient rats, whereas it increased the insulin level in control rats. The fasting plasma glucagon level was high in thiamine deficiency. Tolbutamide increased the plasma glucagon in control rats, but did so only marginally in thiamine-deficient rats. Arginine also increased the glucagon secretion throughout the period of study in control rats. In thiamine-deficient rats the glucagon secretion was pronounced only after 20 min of arginine administration. These results suggest that an unimpaired glucose metabolism is a prerequisite to induce proper insulin secretion. Only proper insulin secretion can check the glucagon secretion rather than the increased glucose level. Hypoglycemia can induce glucagon secretion independent of the insulin level.  相似文献   

19.
Specific insulin binding with insulin receptors of fatty acid plasma membranes is established to be intensified 10 days after adrenalectomy in rats due to an increase in the receptor number. Hydrocortisone administered for 10 days in a dose of 1 mg per 100 g of body mass to adrenalectomized rats for substitution therapy and to intact ones for 14 days in a dose of 5 mg per 100 g of body mass to induce hypercorticism inhibits the expression of insulin receptors of fatty plasma membranes because of their number and affinity for the hormone. The data obtained confirm information on an inhibitory effect of glucocorticoids on the expression of insulin receptors.  相似文献   

20.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号