首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Binding of staphylococcal enterotoxin A (SEA) to MHC class II encoded proteins is a prerequisite for its subsequent activation of a large fraction of T lymphocytes through interaction with variable segments of the TCR-beta chain. We cloned SEA in Escherichia coli and produced four recombinant fragments covering both the N- and C-terminal regions. These fragments were used to analyze the interaction between SEA and the human MHC class II products. A C-terminal fragment of SEA, representing amino acids 107-233 bound to HLA-DR and HLA-DP but did not activate T cells. The three other fragments (amino acids 1-125, 1-179 and 126-233) neither bound to MHC class II Ag nor activated T cells. SEA apparently bind to HLA-DR and HLA-DP through its C-terminal part, whereas T cell activation is dependent on additional parts of the protein.  相似文献   

2.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

3.
By fusion of mouse spleen cells immunized with five different staphylococcal enterotoxins (SEA, SEB, SEC2, SED, and SEE) with myeloma cells, we obtained 15 hybridomas producing monoclonal antibodies (mAbs). Four mAbs were reactive with both SEA and SEE, whereas 8 mAbs were reactive with SEB and SEC2. One mAb reacted with SEA, SED, and SEE. The other two mAbs were found to be reactive with all five serotypes of SEs. The mAbs specific for five serotypes of SEs were found to be most reactive with SED, reactive with SEA, and slightly less reactive with SEB, SEC2, and SEE. Those mAbs with specificities for all serotypes of SEs may be valuable to prepare immunoadsorbent(s) for isolation of SEs and to detect SEs in foods and clinical specimens involved in outbreaks of staphylococcal food poisoning.  相似文献   

4.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

5.
Strong cross-reactions were demonstrated for staphylococcal enterotoxins B (SEB) and C1 (SEC1) by antigen-binding capacity and by competitive binding ability. Both SEB and SEC1 combined completely with the heterologous antibody although requiring four times as much antiserum as the homologous enterotoxin and both displaced about one-third of the other enterotoxin from a heterologous antigen-antibody system. It is proposed that one of the three major antigenic determinants of these enterotoxins possesses a significant similarity but probably not an identity of structure. SEB and SEC1 did not combine with antiserum to enterotoxin A nor inhibit the reaction of SEA with anti-SEA. SEA had no intrinsic binding capacity for anti-SEB or anti SEC1 nor did it inhibit the binding of either enterotoxin to its own antibody. Affinity chromatography was employed to demonstrate that a small apparent binding of SEA to anti-SEB was due to antibody to SEA in the anti-SEB serum and that an almost complete displacement of SEC1 binding to anti-SEC1 was caused by contaminating SEC (about 0.01%) in preparations of enterotoxin A.  相似文献   

6.
The avidin-biotin enzyme-linked immunosorbent assay (ELISA), reversed passive latex agglutination (RPLA) test, and the modified Ouchterlony precipitation test (MOPT) were compared in detecting enterotoxin production by Staphylococcus aureus strains. A total of 1015 strains isolated from human beings, animals, and foods were tested for staphylococcal enterotoxins A (SEA), B (SEB), and C (SEC). Of these, 495 (48.8%), 467 (46.0%), and 204 (20.1%) were classified as enterotoxigenic by the ELISA, RPLA test, and MOPT, respectively. The difference in the number of strains classified as enterotoxigenic by the ELISA and RPLA test was not significant (P > or = 0.05; chi 2), but both tests detected significantly (P < 0.001; chi 2) more enterotoxigenic strains than the MOPT. The combined use of the three assay systems classified 258 (25.4%), 278 (27.4%), and 263 (25.9%) of 1015 strains tested as positive for SEA, SEB, and SEC, respectively. However, the three systems were all positive in only 29.1% of SEA-producing strains, 32.0% of SEB-producing strains, and 25.1% of SEC-producing strains. The MOPT was negative when the corresponding ELISA and RPLA test were positive (46.9% for SEA, 43.5% for SEB, and 40% for SEC); the RPLA test was negative when the corresponding ELISA was positive (10.5% for SEA, 15.5% for SEB, and 25.5% for SEC); and the ELISA was negative when the RPLA test was positive (13.6% for SEA, 9.0% for SEB, and 9.5% for SEC). All factors considered, the RPLA test appears most suitable for quantitatively screening large numbers of strains for staphylococcal enterotoxins.  相似文献   

7.
目的评定安徽地区各奶站牛奶中金黄色葡萄球菌以及肠毒素的污染情况。方法通过从安徽省不同地区30所奶站采集乳样,进行乳源性金黄色葡萄球菌的分离与生化鉴定,并采用PCR技术对分离出的菌株进行金黄色葡萄球菌肠毒素血清型鉴定。结果安徽省30个奶站中有4个地区奶站的牛奶中污染金黄色葡萄球菌;从污染牛奶中共分离出5株金黄色葡萄球菌,检出率为16.7%。经鉴定,所分离出的金黄色葡萄球菌中2株为肠毒素A型,1株为肠毒素C型,2株为同时产肠毒素A和肠毒素C。结论安徽省不同地区奶站中的牛奶污染的金黄色葡萄球菌产肠毒素类型以肠毒素A为主。  相似文献   

8.
Toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins (SE) A, B, and C were studied on binding to rabbit spleen cells. The toxins showed remarkable mitogenic effects on the cells. Among them, SEA and TSST-1 had much stronger mitogenic activities than SEB and SEC. Binding study showed that labeled TSST-1 and SEA bound considerably to cells, but that labeled SEB or SEC was not observed to bind at a detectable level under the same conditions as TSST-1 and SEA. Competitive binding analysis between toxins to cells proved that TSST-1 and SEA clearly competed with each other in binding. Scatchard plots for TSST-1 and SEA in binding were linear at the doses used. The Scatchard analysis for TSST-1 and SEA gave a dissociation constant of 2.5 X 10(-9) M and 7.6 X 10(-8) M and the number of binding sites per cell of 5.3 X 10(3) and 1.0 X 10(5), respectively.  相似文献   

9.
Culture supernatant fluids from 26 (23.6%) monkey feeding test-positive Staphylococcus aureus strains, negative for enterotoxins by gel diffusion, were positive by enzyme-linked immunosorbent assay for one or more of the identified enterotoxins. Staphylococcal enterotoxin D (SED) was produced by 23 (88.5%) strains, SED and SEA were produced in two strains, and SED and SEC were produced in one strain. One strain produced only SEA, and two strains produced only SEC.  相似文献   

10.
Culture supernatant fluids from 26 (23.6%) monkey feeding test-positive Staphylococcus aureus strains, negative for enterotoxins by gel diffusion, were positive by enzyme-linked immunosorbent assay for one or more of the identified enterotoxins. Staphylococcal enterotoxin D (SED) was produced by 23 (88.5%) strains, SED and SEA were produced in two strains, and SED and SEC were produced in one strain. One strain produced only SEA, and two strains produced only SEC.  相似文献   

11.
We previously have shown that former patients and patients with active cases of schistosomiasis mansoni have T lymphocytes in their PBMC that proliferate when exposed to immunoaffinity-purified antibodies against Schistosoma mansoni soluble egg antigens (SEA). These T cell anti-idiotypic responses required the participation of adherent cells, but the role of these cells in the response to the Id has been unclear. We now show that chloroquine does not interfere with Id-elicited stimulation of cells from former patients but completely inhibits their response to the SEA. F(ab')2 fragments of anti-SEA Id are stimulatory, and excess normal human IgG does not alter anti-Id responses. Soluble Id F(ab) fragments are not stimulatory, but rather inhibit stimulation by the intact Id from which they were made. Either intact Id or their F(ab')2 fragments can stimulate non-adherent T cells in the absence of adherent cells if an exogenous source of purified or recombinant human IL-1 is supplied. Nonstimulatory F(ab) fragments can stimulate nonadherent cells if they are bound first to Sepharose 4B and presented in conjunction with IL-1. Thus, T cells from former schistosomiasis patients can react with polyclonal anti-SEA-related Id directly. Under these conditions T cell proliferation requires receptor cross-linking and a source of IL-1 but does not require either "processing" of Id or MHC co-presentation.  相似文献   

12.
A staphylococcal enterotoxin visual immunoassay kit (TECRA) has recently become commercially available. Since the kit is an enzyme-linked immunosorbent assay system equipped with polyvalent antisera against staphylococcal enterotoxin types A to E (SEA to SEE) and the test is simple and rapid to perform (4 h), it has been widely used for screening purposes. In this study, the sensitivity of the kit for detection of SEA, SEB, and SEC in ham, cheese, and mushrooms was similar to those of kits based on an enzyme immunoassay and reversed passive latex agglutination: 0.75 to 1.0 ng of SEA per ml, 0.5 to 0.75 ng of SEB per ml, and 1.0 to 1.25 ng of SEC per ml. However, the TECRA kit showed nonspecific reactions with food samples contaminated by microorganisms other than Staphylococcus aureus, such as Enterobacter agglomerans, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens. The substance contributing to the false-positive results differed from true staphylococcal enterotoxins in that it was (i) heat labile (completely inactivated by heating for 2 min at 100 degrees C, whereas true staphylococcal enterotoxins were inactivated by about 10% with this treatment), (ii) lower in molecular weight than staphylococcal enterotoxins, and (iii) not bound to a copper chelate Sepharose gel (all of the substance remained in the unbound wash fraction, whereas staphylococcal enterotoxins were quantitatively bound to the gel). The problem of false-positive results with the TECRA kit could be resolved by heat treatment (2 min at 100 degrees C) or by cleanup procedures involving metal chelate affinity chromatography with copper chelate Sepharose for 4 h before use of the TECRA kit.  相似文献   

13.
C E Park  M Akhtar    M K Rayman 《Applied microbiology》1992,58(8):2509-2512
A staphylococcal enterotoxin visual immunoassay kit (TECRA) has recently become commercially available. Since the kit is an enzyme-linked immunosorbent assay system equipped with polyvalent antisera against staphylococcal enterotoxin types A to E (SEA to SEE) and the test is simple and rapid to perform (4 h), it has been widely used for screening purposes. In this study, the sensitivity of the kit for detection of SEA, SEB, and SEC in ham, cheese, and mushrooms was similar to those of kits based on an enzyme immunoassay and reversed passive latex agglutination: 0.75 to 1.0 ng of SEA per ml, 0.5 to 0.75 ng of SEB per ml, and 1.0 to 1.25 ng of SEC per ml. However, the TECRA kit showed nonspecific reactions with food samples contaminated by microorganisms other than Staphylococcus aureus, such as Enterobacter agglomerans, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens. The substance contributing to the false-positive results differed from true staphylococcal enterotoxins in that it was (i) heat labile (completely inactivated by heating for 2 min at 100 degrees C, whereas true staphylococcal enterotoxins were inactivated by about 10% with this treatment), (ii) lower in molecular weight than staphylococcal enterotoxins, and (iii) not bound to a copper chelate Sepharose gel (all of the substance remained in the unbound wash fraction, whereas staphylococcal enterotoxins were quantitatively bound to the gel). The problem of false-positive results with the TECRA kit could be resolved by heat treatment (2 min at 100 degrees C) or by cleanup procedures involving metal chelate affinity chromatography with copper chelate Sepharose for 4 h before use of the TECRA kit.  相似文献   

14.
Topology of the functions in molecule of staphylococcal enterotoxin Type A   总被引:5,自引:0,他引:5  
Four fragments (F1-F4) of SEA, obtained via papain proteolysis were separated and isolated as individual components by means of the SDS-electrophoresis in polyacrilamide gel. Molecular masses of the pairs F1 + F4 and F2 + F3 are equal to the mass of the intact toxin--a fact that supposes a cleavage of polypeptide chain in two regions of "disulphide loop" in a SEA molecule. Neither fragment possesses any enterpathogenic properties. It was established, that interferonogenic and mitogenic activity of SEA is connected only with the part of molecule corresponding to F1(17,500) and F3(15,000). Two kinds of antigenic determinants in the SEA molecule were found: one was attributed to F1 and F3 fragments, the other was localised in F2 and F4. Proteolysis by trypsin led to cleavage of a small peptide from the N-terminal end of toxin molecule. Trypsinized SEA displayed all kinds of biological activity characterizing the native toxin.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

16.
We applied two-dimensional gel electrophoresis (2-DE) to the total exoproteins secreted from pathogenic MRSA strains and identified major protein spots by N-terminal amino acid sequence analysis. In approximately 300 to 500 spots visualized on each gel, various exoproteins and cell-associated proteins were identified and their sites on the gels confirmed for construction of a reference map. Major exotoxins such as enterotoxins SEA, SEB, and SEC,, toxic shock syndrome toxin-1 (TSST-1), and hemolysins were distributed in the region of pI 6.8 to 8.1 and MW 21 to 35 kDa. Although the differences between calculated and observed values of pI and MW were relatively small in each exoprotein, those of several proteins including alpha-hemolysin and SEB were considerably deviated from the positions of the expected values. Some exoproteins were detected as multiple spots. These included beta-hemolysin, enterotoxins SEA, SEB, and SEC3, glutamic acid-specific endopeptidase, glycerophosphoryl diester phosphodiesterase and triacylglycerol lipase. The multiple spots of these exoproteins may be generated by the action of own proteases. Certain similarities of 2-DE patterns among strains belonging to the same coagulase types were observed. On the basis of 2-DE image analysis, coagulase type II strains secreted somewhat larger amounts of SEB and SEC3 as well as TSST-1 than the strains belonging to other coagulase types. Taken together, 2-DE analysis of exoproteins is applicable to epidemiological studies for MRSA, as compared with pulsed field gel electrophoresis of restricted chromosomal DNA.  相似文献   

17.
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20-30 kdalton range. The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60-80 kdalton region and in increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

18.
Sigrid M. Klein  Leo P. Vernon 《BBA》1977,459(3):364-375
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20–30 kdalton range.The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60–80 kdalton region and an increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

19.
 Superantigens such as the staphylococcal enterotoxin A (SEA) are among the most potent T cell activators known. They bind to major histocompatibility complex (MHC) class II molecules and interact with T cells depending on their T cell receptor (TCR) Vβ expression. Superantigens also induce a variety of cytokines and trigger a direct cytotoxic effect against MHC-class-II-positive target cells. In order to extend superantigen-dependent cell-mediated cytotoxicity (SDCC) to MHC-class-II-negative neuroblastoma cells, SEA was linked to the anti-ganglioside GD2 human/mouse chimeric monoclonal antibody (mAb) ch14.18. Ganglioside GD2 is expressed on most tumours of neuroectodermal origin but is expressed to a lesser extent on normal tissues. The linkage of ch14.18 to SEA was achieved either with a protein-A–SEA fusion protein or by chemical coupling. Both constructs induced T-cell-mediated cytotoxicity towards GD2-positive neuroblastoma cells in an effector-to-target(E:T)-ratio-and dose-dependent manner in vitro. To reduce the MHC class II affinity of SEA, a point mutation was introduced in the SEA gene (SEAm9) that resulted in 1000-fold less T cell killing of MHC-class-II-expressing cells as compared to native SEA. However, a protein-A–SEAm9 fusion protein mediated cytotoxicity similar to that of protein-A–SEA on ch14.18-coated, MHC-class-II-negative neuroblastoma cells. Taken together, these findings suggest that superantigen-dependent and monoclonal-antibody-targeted lysis may be a potent novel approach for neuroblastoma therapy. Received: 15 March 1995 / Accepted: 22 May 1995  相似文献   

20.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号