首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodiversity of freshwater systems is endangered, especially in Mediterranean semiarid areas such as the south east of the Iberian Peninsula, whose rich and endemic biota is threatened by the development of surrounding land-crop irrigation. For this reason, the prioritization of areas for biodiversity conservation is an urgent target. In this study we used data records of water beetles from a province of the southeast of Spain for assessing priority areas for freshwater biodiversity conservation. We compare the performance of various area-selection methods, ranging from scoring procedures to complementarity-based algorithms, which are based on different criteria such as richness, rarity and vulnerability. The complementarity approaches were more efficient than methods using scoring or richness and rarity hotspots for representing conservation targets in a given number of areas and for identifying the minimum set of areas containing all species at least once. Within these, the richness-based algorithm was more efficient than rarity-based algorithm. Crucial target habitats for aquatic biodiversity conservation in the area studied are streams at medium altitude, hypersaline streams, and endorreic and karstic complexes.  相似文献   

2.
Protected areas are considered as an essential strategy to halt the decline of biodiversity. Ecological representation in protected areas is crucial for assessment on the progress toward conservation targets. Although China has established a large number of protected areas since the 1950s, ecological representation of protected areas is poorly understood. Here, we performed the complementarity analysis to evaluate ecological representation of protected areas in China. We used a database of the geographical distribution for 10,396 woody plant species, 2,305 fern species, 406 amphibian species, 460 reptile species, 1,364 bird species, and 590 mammal species from 2,376 counties across China. We identified complementary sets of counties for all species or threatened species of plant and vertebrate species using a complementarity algorithm. We evaluated ecological representation of 3,627 protected areas and discerned conservation gaps by comparing the distribution of protected areas with complementary sets. The results show that the spatially representative and complementary sites for biodiversity are poorly covered, and a fairly large proportion of protected areas is not designed to efficiently represent biodiversity at the national scale. Our methodology can serve as a generic framework for assessment on ecological representation of protected areas at the national scale.  相似文献   

3.
Representativeness is a desirable property of conservation networks. In this paper an attempt is made to assess the efficiency of current conservation networks in Portugal in representing vertebrates (reptiles and amphibians) and plants (gymnosperms, pteridophytes and bryophytes). It was found that whilst the protected areas do not sample all species in the database they provide a better result than choosing areas at random. For the goal of maximizing representation of taxa per unit area hotspots and complementarity performed better. A pattern of over-representation of vertebrates in relation to lower plants was discovered among selected conservation areas in Portugal suggesting that charismatic organisms with large home ranges may not always be the most appropriate surrogates for biodiversity when representativeness is sought. When trying to fill the gaps in current protected areas with additional areas only complementarity performed better than choosing areas at random. Both rarity and richness hotspots gave worse results. Opportunistic administrative criteria such as supplementing the PAS with other conservation areas (CORINE Biotopes) without taking into account their contribution to a representation goal was nearly half as good as choosing areas at random. The results recall for the need of explicit goals and accountable methods in area selection for conservation and reinforce the role of complementarity for finding additional areas to protected areas when limited resources are available for ‘in situ’ conservation.  相似文献   

4.
Protected areas are valuable in conserving tropical biodiversity, but an insufficient understanding of species diversity and distributions makes it difficult to evaluate their effectiveness. This is especially true on Borneo, a species rich island shared by three countries, and is particularly concerning for bats, a poorly known component of mammal diversity that may be highly susceptible to landscape changes. We reviewed the diversity, distributions and conservation status of 54 bat species to determine the representation of these taxa in Borneo’s protected areas, and whether these reserves complement each other in terms of bat diversity. Lower and upper bound estimates of bat species composition were characterised in 23 protected areas and the proposed boundaries of the Heart of Borneo conservation area. We used lower and upper bound estimates of species composition. By using actual inventories, species representation was highly irregular, and even if some reserves were included in the Heart of Borneo, the protected area network would still exhibit low complementarity. By inferring species presence from distributions, composition between most reserves was similar, and complementarity was much higher. Predicting species richness using abundance information suggested that bat species representation in reserves may lie between these two extremes. We recommend that researchers better sample biodiversity over the island and address the conservation threats faced in Borneo both within and outside protected areas. While the Heart of Borneo Initiative is commendable, it should not divert attention from other conservation areas.  相似文献   

5.
Richness, rarity, endemism and complementarity of indicator taxon species are often used to select conservation areas, which are then assumed to represent most regional biodiversity. Assessments of the degree to which these indicator conservation areas coincide across different taxa have been conducted on a variety of vertebrate, invertebrate and plant groups at a national scale in Britain, Canada, USA and South Africa and at a regional scale in Cameroon, Uganda and the USA. A low degree of spatial overlap among and within these selected indicator conservation areas has been demonstrated. These results tend to suggest that indicator conservation areas display little congruence across different taxa. However, some of these studies demonstrate that many conservation areas for indicator taxa capture a high proportion of non-target species. Thus it appears that indicator conservation areas might sample overall biodiversity efficiently. These indicator conservation areas may, however, exclude species essential for effective conservation, e.g. rare, endemic or endangered species. The present study investigated the value of indicator taxa as biodiversity surrogates using spatial congruence and representativeness of different indicator priority conservation areas. The conservation status of species excluded by the indicator approaches is also assessed. Indicator priority conservation areas demonstrate high land area requirements in order to fully represent non-target species. These results suggest that efficient priority area selection techniques must reach a compromise between maximizing non-target species gains and minimizing land-use requirements. Reserve selection procedures using indicator-based complementarity appear to be approaches which best satisfy this trade-off.  相似文献   

6.
Explicit, quantitative procedures for identifying biodiversity priority areas are replacing the often ad hoc procedures used in the past to design networks of reserves to conserve biodiversity. This change facilitates more informed choices by policy makers, and thereby makes possible greater satisfaction of conservation goals with increased efficiency. A key feature of these procedures is the use of the principle of complementarity, which ensures that areas chosen for inclusion in a reserve network complement those already selected. This paper sketches the historical development of the principle of complementarity and its applications in practical policy decisions. In the first section a brief account is given of the circumstances out of which concerns for more explicit systematic methods for the assessment of the conservation value of different areas arose. The second section details the emergence of the principle of complementarity in four independent contexts. The third section consists of case studies of the use of the principle of complementarity to make practical policy decisions in Australasia, Africa, and America. In the last section, an assessment is made of the extent to which the principle of complementarity transformed the practice of conservation biology by introducing new standards of rigor and explicitness.  相似文献   

7.
Studies of conservation biology involving tiger beetles have become increasingly common in the last 15 years. Governments and NGOs in several countries have considered tiger beetles in making policy decisions of national conservation efforts and have found tiger beetles useful organisms for arguing broad conservation issues. We trace the evolution of the relationship between tiger beetle studies and conservation biology and propose that this history may in itself provide a model for anticipating developments and improvements in the ability of conservation biology to find effective goals, gather appropriate data, and better communicate generalizations to non-scientific decision makers, the public, and other scientists. According to the General Continuum of Scientific Perspectives on Nature model, earliest biological studies begin with natural history and concentrate on observations in the field and specimen collecting, followed by observing and measuring in the field, manipulations in the field, observations and manipulations in the laboratory, and finally enter theoretical science including systems analysis and mathematical models. Using a balance of historical and analytical approaches, we tested the model using scientific studies of tiger beetles (Coleoptera: Cicindelidae) and the field of conservation biology. Conservation biology and tiger beetle studies follow the historical model, but the results for conservation biology also suggest a more complex model of simultaneous parallel developments. We use these results to anticipate ways to better meet goals in conservation biology, such as actively involving amateurs, avoiding exclusion of the public, and improving language and style in scientific communication. CXLV, Studies of Tiger Beetles  相似文献   

8.
A central goal of conservation science is to identify the most important habitat patches for maintaining biodiversity on a landscape. Spatial biodiversity patterns are often used for such assessments, and patches that harbor unique diversity are generally prioritized over those with high community similarity to other areas. This places an emphasis on biodiversity representation, but removing a patch can have cascading effects on biodiversity persistence in the remaining ecological communities. Metacommunity theory provides a mechanistic route to the linking of biodiversity patterns on a landscape with the subsequent dynamics of diversity loss after habitat is degraded. Using spatially explicit neutral theory, I focus on the situation where spatial patterns of diversity and similarity are generated by the structure of dispersal networks and not environmental gradients. I find that gains in biodiversity representation are nullified by losses in persistence, and as a result the effects of removing a patch on metacommunity diversity are essentially independent of complementarity or other biodiversity patterns. In this scenario, maximizing protected area and not biodiversity representation is the key to maintaining diversity in the long term. These results highlight the need for a broader understanding of how conservation paradigms perform under different models of metacommunity dynamics.  相似文献   

9.
生物多样性重要区域识别——国外案例、国内研究进展   总被引:1,自引:0,他引:1  
武建勇  薛达元  王爱华  赵富伟 《生态学报》2016,36(10):3108-3114
生物多样性丧失已经成为全球重大环境问题之一,重要区域或重要物种的识别是制定和实施保护计划的首要步骤,生物多样性保护的优先性研究成为保护生物学研究的焦点之一。优先保护的概念很早就被提出,保护国际(Conservation International,CI)一直倡导的热点地区途径受到国际社会的重视,生物多样性重要区域(KBAs)可以是综合的,也可以是单一类群的重要区域,如不同的国家已经开展了鸟类重要区域(important bird areas,IBAs)、植物重要区域(important plants areas,IPAs)、蝴蝶重要区域(prime butterfly areas,PBAs)和两栖爬行动物重要区域(important amphibians and reptiles areas,IARAs)等的识别研究工作。集中力量优先保护一些重要的地区是目前生物多样性保护较为现实和高效的途径。以佛得角群岛(the Cape Verde Islands)、意大利(Italy)、荷兰(the Netherlands)分别依据动物、植物单一类群或多个类群组合进行生物多样性重要区域识别为例,介绍了几个国家的生物多样性重要区域识别经验,概述国内在生物多样性重要区域识别领域的研究现状,详细介绍了海南岛生物多样性保护优先区识别案例,同时以国务院2010年批准实施的《中国生物多样性保护战略与行动计划(2011—2030年)》划定的32个陆地生物多样性保护优先区为例,提出中国未来应全面开展生物多样性本底调查,在充分获取生物多样性分布数据的基础上,依据植被类型和物种多样性以及受威胁因素等,在32个陆地生物多样性保护优先区内进一步客观准确地识别生物多样性重要区域(热点中的热点或重要区域中的重要区域),为中国未来的保护地规划、生物多样性监测、政策制定等提供科学支撑。  相似文献   

10.
We analyse optimal and heuristic place prioritization algorithms for biodiversity conservation area network design which can use probabilistic data on the distribution of surrogates for biodiversity. We show how an Expected Surrogate Set Covering Problem (ESSCP) and a Maximal Expected Surrogate Covering Problem (MESCP) can be linearized for computationally efficient solution. For the ESSCP, we study the performance of two optimization software packages (XPRESS and CPLEX) and five heuristic algorithms based on traditional measures of complementarity and rarity as well as the Shannon and Simpson indices of α‐diversity which are being used in this context for the first time. On small artificial data sets the optimal place prioritization algorithms often produced more economical solutions than the heuristic algorithms, though not always ones guaranteed to be optimal. However, with large data sets, the optimal algorithms often required long computation times and produced no better results than heuristic ones. Thus there is generally little reason to prefer optimal to heuristic algorithms with probabilistic data sets.  相似文献   

11.
Abstract Habitat models are now broadly used in conservation planning on public lands. If implemented correctly, habitat modelling is a transparent and repeatable technique for describing and mapping biodiversity values, and its application in peri‐urban and agricultural landscape planning is likely to expand rapidly. Conservation planning in such landscapes must be robust to the scrutiny that arises when biodiversity constraints are placed on developers and private landholders. A standardized modelling and model evaluation method based on widely accepted techniques will improve the robustness of conservation plans. We review current habitat modelling and model evaluation methods and provide a habitat modelling case study in the New South Wales central coast region that we hope will serve as a methodological template for conservation planners. We make recommendations on modelling methods that are appropriate when presence‐absence and presence‐only survey data are available and provide methodological details and a website with data and training material for modellers. Our aim is to provide practical guidelines that preserve methodological rigour and result in defendable habitat models and maps. The case study was undertaken in a rapidly developing area with substantial biodiversity values under urbanization pressure. Habitat maps for seven priority fauna species were developed using logistic regression models of species‐habitat relationships and a bootstrapping methodology was used to evaluate model predictions. The modelled species were the koala, tiger quoll, squirrel glider, yellow‐bellied glider, masked owl, powerful owl and sooty owl. Models ranked sites adequately in terms of habitat suitability and provided predictions of sufficient reliability for the purpose of identifying preliminary conservation priority areas. However, they are subject to multiple uncertainties and should not be viewed as a completely accurate representation of the distribution of species habitat. We recommend the use of model prediction in an adaptive framework whereby models are iteratively updated and refined as new data become available.  相似文献   

12.
This review presents a detailed account and synthesis of studies of the family of tiger beetles (Cicindelidae) from the Neotropical region and their usefulness as a surrogate taxon. Information is included on their taxonomy, phylogeny, physiology, ecology, behavior and conservation. Using a model of historical development, this information is put into a context of what has been studied and what studies are most needed in the future to better understand, conserve and manage biodiversity in the Neotropics.  相似文献   

13.
The higher-level taxonomy of tiger beetles is re-evaluated in light of recent publications based on large taxon sets and a large number of genetic loci. These studies have demonstrated that tiger beetles are a distinct family, Cicindelidae Latreille, sister to the Carabidae Latreille (ground beetles) or Trachypachidae Thomson (false ground beetles) + Carabidae. Recent phylogenies have also recovered consistent patterns in higher-level relationships within the tiger beetles that challenge the traditional taxonomic framework, most of which is more than a century old. These phylogenetic results are reviewed along with concordant morphological characters to create an updated higher-level classification. The subfamily Collyrinae Csiki is not supported by any modern data. We recognize six tribes, Manticorini Laporte (new sense), Megacephalini Laporte (new sense), Collyridini Brullé, Ctenostomatini Laporte, Cicindelini Latreille and the reinstated Oxycheilini Chaudoir (with emended spelling).  相似文献   

14.
15.
Given species inventories of all sites in a planning area, integer programming or heuristic algorithms can prioritize sites in terms of the site's complementary value, that is, the ability of the site to complement (add unrepresented species to) other sites prioritized for conservation. The utility of these procedures is limited because distributions of species are typically available only as coarse atlases or range maps, whereas conservation planners need to prioritize relatively small sites. If such coarse‐resolution information can be used to identify small sites that efficiently represent species (i.e., downscaled), then such data can be useful for conservation planning. We develop and test a new type of surrogate for biodiversity, which we call downscaled complementarity. In this approach, complementarity values from large cells are downscaled to small cells, using statistical methods or simple map overlays. We illustrate our approach for birds in Spain by building models at coarse scale (50 × 50 km atlas of European birds, and global range maps of birds interpreted at the same 50 × 50 km grid size), using this model to predict complementary value for 10 × 10 km cells in Spain, and testing how well‐prioritized cells represented bird distributions in an independent bird atlas of those 10 × 10 km cells. Downscaled complementarity was about 63–77% as effective as having full knowledge of the 10‐km atlas data in its ability to improve on random selection of sites. Downscaled complementarity has relatively low data acquisition cost and meets representation goals well compared with other surrogates currently in use. Our study justifies additional tests to determine whether downscaled complementarity is an effective surrogate for other regions and taxa, and at spatial resolution finer than 10 × 10 km cells. Until such tests have been completed, we caution against assuming that any surrogate can reliably prioritize sites for species representation.  相似文献   

16.
Distributional ranges of 17 genera and 172 species of Malagasy tiger beetles (Coleoptera, Cicindelidae) have been compiled to determine patterns of species richness and endemism. These patterns reveal large sampling gaps, and potential priority areas for conservation action. Northern and south-western parts of the island are richer in genera, whereas eastern and especially northern parts of the rainforest show higher species richness, due to extensive radiations within the genera Pogonostoma and Physodeutera. A set of 23 areas are identified in this study as priority foci for tiger beetle conservation, and six general regions are bioinventory priorities.  相似文献   

17.
Identifying geographical areas with the greatest representation of the tree of life is an important goal for the management and conservation of biodiversity. While there are methods available for using a single phylogenetic tree to assess spatial patterns of biodiversity, there has been limited exploration of how separate phylogenies from multiple taxonomic groups can be used jointly to map diversity and endemism. Here, we demonstrate how to apply different phylogenetic approaches to assess biodiversity across multiple taxonomic groups. We map spatial patterns of phylogenetic diversity/endemism to identify concordant areas with the greatest representation of biodiversity across multiple taxa and demonstrate the approach by applying it to the Murray–Darling basin region of southeastern Australia. The areas with significant centers of phylogenetic diversity and endemism were distributed differently for the five taxonomic groups studied (plant genera, fish, tree frogs, acacias, and eucalypts); no strong shared patterns across all five groups emerged. However, congruence was apparent between some groups in some parts of the basin. The northern region of the basin emerges from the analysis as a priority area for future conservation initiatives focused on eucalypts and tree frogs. The southern region is particularly important for conservation of the evolutionary heritage of plants and fishes.  相似文献   

18.
Tiger beetles (Insecta: Coleoptera: Cicindelidae) often occupy small patches of suitable habitat in otherwise unsuitable landscapes. Such patches are easily overlooked, which may lead to underestimates of both the number of occurrences and the overall population size. In this study, simple World Wide Web-based tools (Google Earth and Microsoft Terraserver) were used to search high-resolution satellite imagery for patches of suitable habitat for globally and regionally rare tiger beetles on a 3,278 ha wildlife refuge in Maryland, USA. This tract is largely forested but contains scattered small open areas of sand and clay soils that are potential habitat for tiger beetles of conservation concern. Visual inspection of remotely sensed imagery resulted in the identification of 19 potential habitat patches, 15 of which yielded tiger beetle populations when surveyed on the ground. The number of species of tiger beetles recorded from this tract was increased from 3 to 8 and two new sites were discovered for the state sensitive species Cicindela scutellaris rugifrons Dejean. In addition, a small population of C. splendida Hentz was discovered, a species last reported from Maryland in 1948. The technique described here shows great promise for locating small patches of potential tiger beetle habitat in otherwise unsuitable landscapes.  相似文献   

19.
Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation.  相似文献   

20.
Oaxaca, located in south‐west México within the Mesoamerican biodiversity hotspot, holds exceptionally high biodiversity for several taxa, including mammals. It has four decreed natural protected areas (NPAs) covering 5% of its total area, but only three of these, covering only 0.2% of the area, are strictly protected as National Parks. The current study develops ecological niche models for 183 terrestrial mammals for use as biodiversity surrogates in a systematic conservation planning exercise. Forty‐five of these species were selected on the basis of their being either endangered or threatened or otherwise listed under the Mexican Red List or because they were endemic to either Oaxaca or to Mexico. The niche models were constructed with a machine‐learning algorithm (GARP, Genetic Algorithm for Rule‐Set Prediction) and refined by restricting each model to sites with suitable vegetation and habitat patches contiguous with known occurrences of the species. If the entire predicted geographical distribution of each of the 45 species listed above is put under protection, the entire state of Oaxaca gets included. Therefore, we imposed different constraints on the maximum area that can be put under protection (5–30% of the area of Oaxaca) and selected nominal conservation area networks based on different percentage representation targets for the species’ modelled distributions based on their conservation status (10–100%). The area selection utilized a rarity‐ and complementarity‐based algorithm (in the ResNet software package). The goal was to have as many as possible of the 45 species at risk meet their specified representation targets in the budgeted area. The methods developed here combine ecological niche modelling and area prioritization algorithms for integrated conservation planning in a protocol that is suitable for other highly biodiverse regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号