首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation resistant bacteria Micrococcus radiophilus and M. radioproteolyticus were studied by thin sectioning and freeze-etching techniques and the two species were found to be similar in the fine structure. The only significant difference was in the appearance of the surfaces of the cell walls in freeze-etched preparations.Since the two species, together with M. radiodurans, possess a unique cell wall structure and a cell wall peptidoglycan, which is different from that of other micrococci and Gram-positive cocci, it is recommended that they be reclassified into a new genus.  相似文献   

2.
When penicillin, and other inhibitors of peptidoglycan synthesis were added to encysting cultures of Bdellovibrio strain W, the encysting process continued, resulting in the production of cysts which were spherical in shape. Transmission electron micrographs of these spherical bdellocysts revealed the absence of an outer cyst wall. These cysts, devoid of cyst wall, were capable of germination under appropriate condition with the emergence from the prey ghost of highly motile spheroplasts. Withdrawl of the antibiotics after encystment had begun led to the production of spherical cysts that were surrounded by an outer cyst wall.  相似文献   

3.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

4.
Two strains of unicellular cyanobacteria which reproduce exclusively by budding are described and assigned to genus Chamaesiphon.Non-Standard Abbreviations PG peptidoglycan layer of the gramnegative cell wall - OM outer membrane layer of the gram-negative cell wall - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DNA deoxyribonucleic acid - GC guanine + cytosine  相似文献   

5.
The cell wall of the gram-negative bacterium Acinetobacter species strain MJT/F5/5 shows in thin section an external “additional” layer, an outer membrane, an intermediate layer, and a dense layer. Negatively stained preparations showed that the additional layer is composed of hexagonally arranged subunits. In glycerol-treated preparations, freeze-etching revealed that the cell walls consist of four layers, with the main plane of fracture between layers cw 2 and cw 3. The surface of [Formula: see text] 2 consisted of densely packed particles, whereas [Formula: see text] 3 appeared to be fibrillar. In cell envelopes treated with lysozyme by various methods, the removal of the dense layer has detached the outer membrane and additional layer from the underlying layers, as shown in thin sections. When freeze-etched in the absence of glycerol, these detached outer membranes with additional layers fractured to reveal both the faces [Formula: see text] 2 and [Formula: see text] 3 with their characteristic surface structures, and, in addition, both the external and internal etched surfaces were revealed. This experiment provided conclusive evidence that the main fracture plane in the cell wall lies within the interior of the outer membrane. This and other evidence showed that the corresponding layers in thin sections and freeze-etched preparations are: the additional layer, cw 1; the outer membrane, cw (2 + 3); and the intermediate and dense layers together from cw 4. Because of similarities in structure between this Acinetobacter and other gram-negative bacteria, it seemed probable that the interior of the outer membrane is the plane most liable to fracture in the cell walls of most gram-negative bacteria.  相似文献   

6.
The freeze-fracture technique and electron microscopy have been used to demonstrate that localized damage is inflicted upon the cytoplasmic membrane of Spirillum serpens VHL within 20 to 30 min after the start of its association with Bdellovibrio bacteriovorus 109D. This damage is not observed in uninfected Spirillum cells, nor in infected cells within the first 10 min. This damage takes the form of a “blister” which, when viewed stereoscopically in electron micrographs, is seen to project toward the interior of the Spirillum cell. Shortly after its formation, the blister becomes elaborated into a series of ridges which may assume forms ranging from an elaborate spiral to a series of loops or knots. The formation of a blister is shown to involve both the inner and outer leaves of the membrane bilayer, and evidence is presented to indicate that the blister site corresponds to the site of attachment of the Bdellovibrio cell. The hypothesis is proposed that this ultrastructural damage is the cytological basis for the controlled and localized leakage through the cytoplasmic membrane into the periplasmic space of the Spirillum cell at locations adjacent to the Bdellovibrio cell. It is suggested that this localized membrane damage may be the ultrastructural basis for the high efficiency with which bdellowvibrios are known to incorporate cytoplasmic materials from the other bacteria in whose periplasmic spaces they develop.  相似文献   

7.
Summary Spheroplasts were obtained by lysozyme treatment of 48 hour (4– 8cells) akinete germlings of the cultured cyanobacteriaAnabaena variabilis andA. azollae originally isolated from the leaf cavity of the fernAzolla pinnata. The osmotic stabilizer was 0.5 M sucrose. At least 50% of the cells in a short filament became spheroplasts after 1–4 hours in lysozyme (1 mg/ml) in incubation medium at 34 °C, with greater than 75% viability after 2 hours. The spheroplasts were osmotically fragile and showed intense chlorophyll autofluorescence in UV light. In phase microscopy, treated cells appeared larger, became spherical and lost some of their optical refraction. Transmission electron microscopy confirmed the loss of the peptidoglycan layer and the partial remains of the outer membrane after lysozyme exposure. We previously obtained protoplasts ofAzolla fern leaf cells so that we now can study the recognition sites in both members of theAzolla/Anabaena nitrogen fixing symbiosis during cell wall degradation and regeneration.  相似文献   

8.
Bdellovibrio sp. strain W bdellocysts were produced inEscherichia coli using three sources of3H-diaminopimelic acid (DAP) for incorporation into the cyst wall peptidoglycan: (a) labeledE. coli peptidoglycan, (b) labeledBdellovibrio peptidoglycan, and (c) exogenous3H-DAP in the encystment medium. After cysts were produced, they were either sonicated to remove the prey cell wall, or germinated to solubilize the cyst wall. The results show that label was incorporated into the cyst wall preferentially from the exogenous DAP in the medium, and not from the bdellovibrio or bdelloplast peptidoglycan. The encysting bdellovibrio does not therefore incorporate existing peptidoglycan units from the bdelloplast for synthesis of the cyst wall.  相似文献   

9.
B. G. Turgeon  W. D. Bauer 《Planta》1985,163(3):328-349
The location and topography of infection sites in soybean (Glycine max (L.) Merr.) root hairs spot-inoculated with Rhizobium japonicum have been studied at the ultrastructural level. Infections commonly developed at sites created when the induced deformation of an emerging root hair caused a portion of the root-hair cell wall to press against an adjacent epidermal cell, entrapping rhizobia within the pocket between the two host cells. Infections were initiated by bacteria which became embedded in the mucigel in the enclosed groove. Infection-thread formation in soybean appears to involve degradation of mucigel material and localized disruption of the outer layer of the folded hair cell wall by one or more entrapped rhizobia. Rhizobia at the site of penetration are separated from the host cytoplasm by the host plasmalemma and by a layer of wall material that appears similar or identical to the normal inner layer of the hair cell wall. Proliferation of the bacteria results in an irregular, wall-bound sac near the site of penetration. Tubular infection threads, bounded by wall material of the same appearance as that surrounding the sac, emerge from the sac to carry rhizobia roughly single-file into the hair cell. Growing regions of the infection sac or thread are surrounded by host cytoplasm with high concentrations of organelles associated with synthesis and deposition of membrane and cell-wall material. The threads follow a highly irregular path toward the base of the hair cell. Threads commonly run along the base of the hair cell for some distance, and may branch and penetrate into subjacent cortical cells at several points in a manner analagous to the initial penetration of the root hair.  相似文献   

10.
Among 12 strains ofChlorella ellipsoidea, C. vulgaris, andC. saccharophila tested, 4 strains (1,C. ellpsoidea; 2,C. vulgaris; 1,C. saccharophila) formed osmotically labile protoplasts after treatment with mixtures of polysaccharide degrading enzymes. The relationship between enzymatical digestibility and structure or composition ofChlorella cell walls were studied by electron microscopy and staining techniques with some specific dyes. The cell wall structures of the 12Chlorella strains were grouped into three types: (1) with a trilaminar outer layer, (2) with a thin outer monolayer, and (3) without an outer layer. Protoplasts were formed only from the strains with a cell wall of Type 2. In the strains with a cell wall of Type 1, the outer layer protected the inner major microfibrillar layer against enzymatic digestion. The cell wall of Type 3 was totally resistant to the enzymes; the chemical composition of the cell wall would be somewhat different from that of other types.  相似文献   

11.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

12.
A combination tapetum consisting of a cellular, parietal component and a plasmodial component occurs inSchizaea pectinata. A single, tapetal initial layer divides to form an outer parietal layer which maintains its cellular integrity until late in spore wall development. The inner tapetal layer differentiates into a plasmodium which disappears after the outer exospore has developed. In the final stages of spore wall development, granular material occurs in large masses and is dispersed as small granules throughout the sporangial loculus. No tapetal membrane develops. Comparisons are drawn with the combination tapetum found inPsilotum nudum.  相似文献   

13.
A freeze-etch study of normal cells of Pseudomonas aeruginosa and of cells after incubation with ethylenediaminetetraacetate (EDTA) and tris(hydroxymethyl)aminomethane (Tris) was performed. When cells were freeze-etched without a cryoprotective agent, a smooth outer cell wall layer, which showed a regular array of subunits, and the presence of flagella and pili were observed. These features were not observed in cells freeze-etched after cryoprotection with glycerol. Four fracture surfaces, which resulted from splitting down the center of the outer wall membrane and of the inner cytoplasmic membrane, were revealed in freeze-etched glycerol-protected cells. The murein layer was seen in profile between the outer cell wall membrane and the cytoplasmic membrane. Spherical units and small rods composed of the spherical units were observed in the inner layer of the outer cell wall membrane. These spherical units appeared to be attached to, or embedded in, the inner face of the outer layer of the outer cell wall membrane. These spherical units were removed from cells on exposure to EDTA-Tris, resulting in cells that were osmotically fragile. The spherical units were detected via electron microscopy of negatively stained preparations in the supernatant fluid of cellular suspensions treated with EDTA-Tris. Upon addition of Mg(2+), the spherical units were reaggregated into the inner layer of the outer cell wall membrane and the cells were restored to osmotic stability. The spherical units were shown to consist primarily of protein. These data are thought to represent the first ultrastructural demonstration of reaggregation of cell wall components within a living cell system.  相似文献   

14.
The multilayered cell wall of the cyanobacterium Anacystis nidulans was studied by the freezeetching technique. A characteristic fracture face in the outer cell wall was demonstrated which is densely packed with particles of a diameter of 60–75 Å. This particle layer is comparable with layers which have been described in many cell walls of Gram-negative prokaryotes.The outer membrane of the cell wall was solubilised by extraction with phenol/water or sodium dodecyl sulfate (SDS). In the SDS-extract 31 bands were separated by polyacrylamide gel electrophoresis, among them 3–5 major proteins with molecular weights of approximately 60, 40, and 10 kdaltons, respectively. Several polypeptides of the Anacystis cell wall were comparable in their mobility with polypeptides extracted from cell walls of different Gramnegative bacteria. The analysis of the SDS-unsoluble electron dense layer (sacculi) revealed the typical components of peptidoglycan diaminopimelic acid, muramic acid, glutamic acid, glucosamine and alamine in the molar ratio of 1.0:0.9:1.1:1.5:1.9. In addition, other amino acids (molar ratio from 0.05–0.36), mannosamine (molar ratio 0.54), and lipopolysaccharide components were detected in low concentration.Abbreviations SDS sodium dodecyl sulfate - EDTA ethylene diamine tetraacetate  相似文献   

15.
Scenedesmus obliquus, strain 633, which synthesizes ketocarotenoids and sporopollenin, also forms pink-red-colored cell walls. Both the cell walls left over after autospore liberation and those from homogenates of disrupted green cells have similar carotenoid pigmentation. Canthaxanthin, astaxanthin, an unidentified ketocarotenoid, and lutein were found as integral cell wall components. They are bound to the outer (trilaminar) layer of the complete cell wall which also contains sporopollenin.Abbreviations CWH complete cell walls isolated from the homogenates - CWM maternal cell walls accumulated in the medium - KC ketocarotenoid - SC secondary carotenoids - SP sporopollenin  相似文献   

16.
Markelova  N. Yu. 《Microbiology》2004,73(1):47-50
The paper deals with a comparative study of the growth of free-living and immobilized predatory bacteria of the genus Bdellovibrio in the presence of toxic concentrations of urea and phenol. It was found that the cell wall of bdelloplasts plays a protective role in the adaptation of bdellovibrios to xenobiotics. The attachment of bdellovibrios to solid surfaces allows them to survive under unfavorable environmental conditions.  相似文献   

17.
Detection of an antigenic cell wall layer inHistoplasma capsulatum   总被引:1,自引:0,他引:1  
Histoplasma capsulatum yeast cells have been studied by immunoelectron microscopy using rabbit polyclonal antisera and a biotin-avidin-peroxidase detection system. An antigenic surface layer has been visualized in the cell wall of immunostained organisms. This layer was not seen in samples prepared by standard electron microscopic methods or in negative controls used with the immunocytochemical technique. Without immunostaining the cell wall ofHistoplasma appeared almost transparent. In contrast, after immunoperoxidase staining the cell wall was conspicuous, bounded by the darkly stained outer layer. This electron dense layer, appeared to be a reservoir of surface antigens that were recognized by anti-Histoplasma antibodies.Abbreviations CHHA Cystine-heart-hemoglobin agar - PBS phosphate buffered saline - Ig immunoglobulin - TBS Tris buffered saline - DAB 3,3-diaminobenzidine tetrachloride - FITC fluorescein isothiocyanate - M199 tissue culture medium 199, according to Morgan et al. (1950)  相似文献   

18.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

19.
Summary The large unicellular flagellate,Gloeomonas kupfferi, has recently been used as an important tool in chlamydomonad cell biology research, especially in studies dealing with the structure and function of the endomembrane system. However, little is known about the main secretory product, the cell wall. This study presents structural, chemical and immunological information about this wall. This 850–900 nm thick matrix is highly elaborate and consists of three distinct layers: an inner stratum (325 nm thick) consisting of tightly interwoven fibers, a medial crystalline layer consisting of 22–23 nm subunits and an outer wall layer (500 nm thick) of outwardlyradiating fibrils. Rapid freeze-deep etch analysis reveals that the 35–40 nm fibers of the outer layer form a quasi-lattice of 160 nm subunits. The outer wall can be removed from whole pellets using the chelator, CDTA. The medial wall complex can be solubilized by perchlorate. SDS-gel electrophoresis reveals that the perchlorate soluble-material consists of five high molecular weight glycoproteins and five major low molecular weight glycoproteins. The electrophoretic profile is roughly similar to that ofChlamydomonas reinhardtii. Antibodies were successfully raised against the outer wall component and were shown to label the outer wall layer.  相似文献   

20.
Use of light, transmission, and scanning electronmicroscopes revealed that the epidermal cell wall ofthe red algal agarophytes Gracilaria tikvahiaeMcLachlan and G. cornea J. Agardh consists of adecklamelle and outer and inner wall layers. The twospecies differed, with G. cornea having asignificantly thicker outer wall and a more diffusedecklamelle. After induction, the zooids of Ulvalactuca would attach to glass slides and the twospecies of Gracilaria via an adhesion pad. Within a few days, 3–5 celled germlings penetrated thedecklamelle and outer wall layer of both basiphytes. By the time the epiphyte germlings reached the 15celled stage, they had penetrated the inner walllayer. The differences in epidermal cell wallconstruction between the two basiphytes may play arole in the ability of zooids of U. lactuca toattach in nature where epiphytization of G.cornea is infrequent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号