首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A promising approach to nondrug correction of human stress-induced functional disorders based on double EEG biofeedback (EEGBF) has been substantiated and experimentally tested. According to this approach, narrow-band EEG oscillators that are characteristic of each patient and detectable in real-time are simultaneously used in two independent feedback loops: the traditional adaptive biofeedback loop and an additional resonance stimulation loop. In the latter loop, the feedback signals from individual narrow-band EEG oscillators serve for automatic modulation of the parameters of sensory stimuli and are not perceived consciously by the subject. The combined use of the active (conscious perception) and passive (automatic modulation) feedback signals from narrow-band EEG components of the patient have been demonstrated to offer the possibility of a substantial increase in the efficacy of EEGBF.  相似文献   

2.
Fedotchev AI 《Biofizika》2001,46(1):112-117
The features of resonance phenomena in high-resolution EEG structure were analyzed for two intensities and three values of duration of exposure to 20 constant frequencies of intermittent photic stimulation in a range of 1-20 Hz with 1 Hz steps. It was shown that with a 6 s step duration, an irregular activation of multiple spectral EEG components for both light intensities occurs. With longer durations (12 and 18 s) of fixed-frequency stimulation, the EEG reactions are of resonance nature. Low-intensity flashes cause only the resonance activation of the intrinsic oscillator in the range of dominant alpha-EEG frequency. During a more intensive stimulation, the resonance EEG phenomena are observed for the whole range of stimulation frequencies. The interval of 6-12 s is supposed to be the relaxation period for a system of brain electrical activity generation. After this time, the low-intensity stimuli cause the adaptation of the system to light, whereas more intensive flashes cause more pronounced resonance EEG phenomena and physiological effects.  相似文献   

3.
Two sinusoidal signals, one with a constant frequency of 13 Hz and the other with a frequency continuously changing from 1 to 6 Hz and back, were presented simultaneously to subjects through spectacles with light-emitting diodes either to both eyes as a product (amplitude modulation of a constant frequency by a variable one) or to each eye separately. Both kinds of variable frequency exposure revealed a rhomboid pattern of the resonance activation of the EEG spectrum, similar to the spectral dynamics of a signal subject to amplitude modulation. This testifies to the key role of EEG amplitude modulation in the responses of the nervous system to variable frequency rhythmic stimuli. Both types of photic stimulation led to a substantial increase in EEG spectral density and improved the subjects' self-rating of the overall state of well-being, activity, and mood. In addition, separate stimulation of each eye led to an improvement in the anxiety and exercise performance indices (the Luscher color test) and a significant correlation between the intensity of EEG responses and changes in the general state. These differences are explained in terms of the involvement of the interhemispheric interaction mechanisms in the processing of complex rhythmic signals by the brain.  相似文献   

4.
The photoinduced resonance EEG response in the occipital area (O1 and O2) of right-handed men during 12-s intermittent photic stimulation was studied as a function of flash frequency (6, 10, or 16 Hz) and intensity (5 levels from 0.05 to 0.7 J). The EEG power in the narrow band coinciding with stimulation frequency was FFT-extracted in 3-s intervals before, during, and after each stimulation. It was found that increase in flash intensity was accompanied by an enhancement of the resonance EEG response and decrease in time of reaching its maximal value. These changes were to a greater extent characteristic for the right hemisphere. The low-intensity stimulation induced more pronounced resonance effects in the left hemisphere, whereas the high-intensity flashes to a greater extent involved the right hemisphere. The asymmetry of the EEG response to stimulation of the middle intensity was slight, and the time of reaching the maximal level of the resonance activation was about 6-8 s. A relatively high level of the resonance EEG response was observed during stimulation with the frequency of 10 Hz, even in case of its minimal intensity. The most pronounced resonance EEG response was induced in the right occipital area by the high-intensity 16-Hz stimulation. The enhanced sensitivity of the right hemisphere to intensity of flashes is interpreted as an indication of interhemispheric differences in nonspecific adaptive mechanisms of the brain.  相似文献   

5.
A computerized system for precise stimulation and analysis of electroencephalographic (EEG) reactions to two simultaneously presented frequencies of sine-wave light (one constant, 13 Hz, and the other varying from 1 to 6 Hz and vice versa) was used to study the mechanisms of human brain reactivity to complex rhythmical stimulation. The frequencies were generated by computer and presented to the subjects by three different ways: as a result of their simple summation (additively), as a product of their multiplication (multiplicatively, amplitude modulation of constant frequency by the varying frequency), or by separate presentation to different eyes. The dynamics of electroencephalograms for different types of stimulation were compared. Under all three experimental conditions, the dynamics of EEG spectra has demonstrated the same general pattern of resonance activation, which was similar to that observed for the presented signals in the case of their amplitude modulation. Significant positive shifts in the functional state of subjects were observed as a result of stimulation. The results obtained show the leading role of the processes of amplitude modulation in the interaction of integrative, adaptive, and trace mechanisms of the brain functioning during human perception of complex rhythmical stimuli.  相似文献   

6.
A widespread problem in the study of animal vocalizations is evaluating the acoustic similarity of signals both between individuals of a social group and between social groups. This problem becomes especially salient when classifying the narrow-band frequency-modulated signals, such as whistles, found in many avian and mammalian species. Whistles are usually characterized by their relative change in frequency over time, known as whistle ‘contour’. Measuring such a characteristic is difficult as it is not a single measurement, such as the mean frequency or duration of a signal, but several associated measurements of frequency across time. This paper reports on a new quantitative technique for determining whistle types based on whistle contour similarity and an application of this technique to the whistles of bottlenose dolphins to demonstrate its utility. This ‘contour similarity’ technique (CS technique) uses cluster analysis to group the correlation coefficients of frequency measurements from a data set of signals. To demonstrate the efficacy of this CS technique, three data sets were analysed, two using computer-generated signals and a third using adult bottlenose dolphin whistles, to (1) examine the efficacy of correlation coefficients for grouping signals by their similarity in whistle contour and (2) determine the viability of this technique for categorizing bottlenose dolphin whistles. Measured actual frequencies and correlation matrices from the four simulated signal types and a correlation matrix from the whistles of five captive adult bottlenose dolphins were each subjected to K-means cluster analysis and the resulting signal types were evaluated. Results indicated that the technique grouped actual frequencies according to the amount of shared actual frequencies and grouped correlation coefficients successfully according to signal contour. This result endured even if contours differed in overall duration or actual frequency or were expanded or compressed with respect to frequency or time. The results suggest that this approach is a viable method for assigning whistle contours to categories in bottlenose dolphins or any other species with narrow-band, frequency-modulated signals.  相似文献   

7.
The development of the resonance EEG responses of the left and right occipital areas was studied in right-handed men during prolonged (12 or 120 s) rhythmic, photostimulation with the intensity of 0.7 J and frequencies of 6, 10, and 16 Hz. Analysis of the EEG fine spectral structure was applied to compare the accumulated baseline EEG spectra and EEG spectra during photostimulation, to observe the dynamics of the short-term spectra and to detect power changes in the EEG narrow spectral band sharply coincident with the stimulation frequency. The more pronounced EEG responses to photostimulation were observed in subjects with the initially low EEG baseline, α-rhythm. Two-minute flash trains produced a substantial increase in the EEG power within the stimulation frequency with superposed oscillatory processes with different periods. These fluctuations are considered a reflection of intricate interaction between the adaptive and resonance EEG responses to the presented intermittent stimulation. Under 12-s stimulation the resonance EEG responses are steadily recorded within the first 3 s of stimulation and immediately after the flash cessation EEG power at the stimulation frequency returns to the initial level. The resonance EEG responses were more pronounced in the right hemisphere than in the left one, especially, at the stimulation frequencies of 6 and 16 Hz. With increasing the stimulation frequency, the maximum of resonance EEG responses was reached earlier. Under the stimulation frequency of 6 Hz, the maximal response was recorded 9–12 s after the beginning of flashes, at the frequencies of 10 and 16 Hz, it was recorded within 3–6 and 3 s, respectively.  相似文献   

8.
The most advanced approach to non-drug correction of human functional disturbances via utilization of feedback signals from patient's own endogenous rhythms, i.e., EEG rhythms, respiratory and heart rate is presented and substantiated. The advantages of its application to biofeedback training procedures are reviewed. Alternative way to utilize the feedback signals through automatic modulation of stimulation parameters by patient's endogenous rhythms is analyzed. The author's own contributions to the field are presented and the most promising ways of further approach development are delineated.  相似文献   

9.
EEG activation can be produced by electrical stimulation of some cortical points with the same threshold current strength as by the midbrain RF and thalamic CM stimulation. Near-threshold stimulation of all these points acting simultaneously with inhibitory conditioned signals does not disturb the effector inhibition but displays an EEG difference between negative signals: the fine differentiation sound evokes considerable EEG desynchronization, while the rough one does not change the background rhythms. The same stimulation combined with a positive signal which has been made ineffective by successive inhibition or extinction, reestablishes the intensive EEG activation in response to this signal and the effector conditioned reflex. Therefore a mode-rate additional stimulation of the activating points in the cortex, RF and CM has a disinhibitory influence. When initiated in the cortex this influence may be transmitted from the cortical point to other parts of the brain along transcortical and corticofugal connections.  相似文献   

10.
Formal analysis of resonance entrainment by central pattern generator   总被引:3,自引:0,他引:3  
The neuronal circuit controlling the rhythmic movements in animal locomotion is called the central pattern generator (CPG). The biological control mechanism appears to exploit mechanical resonance to achieve efficient locomotion. The objective of this paper is to reveal the fundamental mechanism underlying entrainment of CPGs to resonance through sensory feedback. To uncover the essential principle, we consider the simplest setting where a pendulum is driven by the reciprocal inhibition oscillator. Existence and properties of stable oscillations are examined by the harmonic balance method, which enables approximate but insightful analysis. In particular, analytical conditions are obtained under which harmonic balance predicts existence of an oscillation at a frequency near the resonance frequency. Our result reveals that the resonance entrainment can be maintained robustly against parameter perturbations through two distinct mechanisms: negative integral feedback and positive rate feedback.  相似文献   

11.
One of the central problems in the study of brain–computer interface and the processes of operant conditioning is the optimal organization of feedback signals. In this paper we have analyzed the question about comparative efficiency of immediate or 2.56-s delayed presentation of feedback signals as photic stimulation automatically controlled by subject’s electroencephalogram (EEG). Strictly controlled experiments showed a significant increase in EEG power and positive shifts in subjective characteristics only under the minimum feedback delay, i.e., in cases where photic stimuli are controlled directly by the current EEG characteristics of the subjects.  相似文献   

12.
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.  相似文献   

13.
We present nonlinear delayed feedback stimulation as a technique for effective desynchronization. This method is intriguingly robust with respect to system and stimulation parameter variations. We demonstrate its broad applicability by applying it to different generic oscillator networks as well as to a population of bursting neurons. Nonlinear delayed feedback specifically counteracts abnormal interactions and, thus, restores the natural frequencies of the individual oscillatory units. Nevertheless, nonlinear delayed feedback enables to strongly detune the macroscopic frequency of the collective oscillation. We propose nonlinear delayed feedback stimulation for the therapy of neurological diseases characterized by abnormal synchrony.  相似文献   

14.
Nine schizophrenic patients participated in a study which explored whether EEG feedback techniques could effect changes in the EEG similar to those associated with neuroleptic-induced improvement. During five sessions, each patient was presented feedback signals which continuously refected the discrepancy between characteristics of the patient's EEG power spectral profile and spectral profile characteristics associated by past research with neuroleptic induced clinical improvement. Significant within-session changes were observed for two of three EEG power spectrum bands of interest. No significant session-to-session EEG changes were observed. The results suggest that the EEG of schizophrenics can be temporarily altered, using feedback techniques, in a way that mimics the EEG changes that have been shown to occur with neuroleptic induced clinical improvement.The authors are indebted to Turan M. Itil, John W. Fredrickson, Michael Madwed, and Irene B. Francis. Senior authorship is shared equally.  相似文献   

15.
Nine schizophrenic patients participated in a study which explored whether EEG feedback techniques could effect changes in the EEG similar to those associated with neuroleptic-induced improvement. During five sessions, each patient was presented feedback signals which continuously reflected the discrepancy between characteristics of the patient's EEG power spectral profile and spectral profile characteristics associated by past research with neuroleptic induced clinical improvement. Significant within-session changes were observed for two of three EEG power spectrum bands of interest. No significant session-to-session EEG changes were observed. The results suggest that the EEG of schizophrenics can be temporarily altered, using feedback techniques, in a way that mimics the EEG changes that have been shown to occur with neuroleptic induced clinical improvement.  相似文献   

16.
V N Ustinov 《Biofizika》1986,31(5):871-876
Results are presented of electrical stimulation of smooth muscles of the stomach by impulses of an electronic device. The work of the latter was synchronized by biopotentials of this organ circulating in the external feedback contour. Myoelectronic control of the frequency of the stomach basic electrical rhythm permits artificial maintenance of its value on quasi-constant level exceeding the initial one by 1.2-1.4 times. The data obtained are explained by a reduced system of differential equations describing the myoelectrical activity of the stomach smooth-muscle cell in terms of the excitable membrane theory.  相似文献   

17.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

18.
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.  相似文献   

19.
The possible mechanisms which determine the temporal dynamics of discrete narrow-band spectral components of human EEG recorded by a single electrode in the state of rest were analyzed. The dynamics of short-segment spectra was observed by application of Fast Fourier Transform (FFT) to 5-s EEG epochs successively shifted by 0.32 s. For each subject the matrices were formed and presented in a graphic mode. Matrix rows represented the number of points in each short-segment spectrum, and the columns represented the number of short-segment spectra. The columns reflect the amplitude dynamics of a given frequency, and power transition between the columns reflects the frequency dynamics. The most common type of the amplitude dynamics consisted in short (2-8 s) periods of stable activity of the discrete spectral components replaced by symmetrical bifurcation or confluence of spectral peaks. The obtained results suggest by the presence of both additive and multiplicative mechanisms of oscillatory interactions in the EEG. More detailed analysis of the amplitude-modulated EEG processes is provided by application of some additive features of the FFT to both EEG and computer-simulated signals.  相似文献   

20.
Halobacteria detect changes in light intensity by retinal proteins, the number and identity of which are not yet unequivocally established. The sensory receptors are different from those for light energy conversion. The cells having no preferred swimming direction spontaneously reverse about every 10 s. An oscillator model has been proposed to explain this periodicity. Depending on wavelength and sign, a stimulus leads either to one prolonged interval between two reversals, the attractant response, or to a shortened interval, the repellent response. Sensory signals generated by stimulation of P-565 and of P-370 are integrated at a common link. Signals from other receptors may be processed by separate links. The nature of the sensory signals is not known, but the membrane potential can be excluded as a candidate. On the basis of the oscillator hypothesis the output signals of the integration links act on the oscillator and thus shift the time at which it triggers a reversal of the flagellar motor. Experiments indicate that cGMP and calcium play antagonistic roles in the oscillatory activity. Reversible methylation of specific membrane proteins influences the time during which successive signals are integrated. This reaction is assumed to terminate the lifetime of the excitatory signals and thus to allow the system to adapt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号