首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Liu  J Yin  M Xiao  C Gao  AS Mason  Z Zhao  Y Liu  J Li  D Fu 《Gene》2012,507(2):106-111
Untranslated regions (UTRs) in eukaryotes play a significant role in the regulation of translation and mRNA half-life, as well as interacting with specific RNA-binding proteins. However, UTRs receive less attention than more crucial elements such as genes, and the basic structural and evolutionary characteristics of UTRs of different species, and the relationship between these UTRs and the genome size and species gene number is not well understood. To address these questions, we performed a comparative analysis of 5' and 3' untranslated regions of different species by analyzing the basic characteristics of 244,976 UTRs from three eukaryote kingdoms (Plantae, Fungi, and Protista). The results showed that the UTR lengths and SSR frequencies in UTRs increased significantly with increasing species gene number while the length and G+C content in 5' UTRs and different types of repetitive sequences in 3' UTRs increased with the increase of genome size. We also found that the sequence length of 5' UTRs was significantly positively correlated with the presence of transposons and SSRs while the sequence length of 3' UTRs was significantly positively correlated with the presence of tandem repeat sequences. These results suggested that evolution of species complexity from lower organisms to higher organisms is accompanied by an increase in the regulatory complexity of UTRs, mediated by increasing UTR length, increasing G+C content of 5' UTRs, and insertion and expansion of repetitive sequences.  相似文献   

2.
Long terminal repeat (LTR) retrotransposons constitute a significant portion of most eukaryote genomes and can dramatically change genome size and organization. Although LTR retrotransposon content variation is well documented, the dynamics of genomic flux caused by their activity are poorly understood on an evolutionary time scale. This is primarily because of the lack of an experimental system composed of closely related species whose divergence times are within the limits of the ability to detect ancestrally related retrotransposons. The genus Oryza, with 24 species, ten genome types, different ploidy levels and over threefold genome size variation, constitutes an ideal experimental system to explore genus-level transposon dynamics. Here we present data on the discovery and characterization of an LTR retrotransposon family named RWG in the genus Oryza. Comparative analysis of transposon content (approximately 20 to 27,000 copies) and transpositional history of this family across the genus revealed a broad spectrum of independent and lineage-specific changes that have implications for the evolution of genome size and organization. In particular, we provide evidence that the basal GG genome of Oryza (O. granulata) has expanded by nearly 25% by a burst of the RWG lineage Gran3 subsequent to speciation. Finally we describe the recent evolutionary origin of Dasheng, a large retrotransposon derivative of the RWG family, specifically found in the A, B and C genome lineages of Oryza.  相似文献   

3.
Highlights? Overview of recent progress in the structural characterization of eukaryotic ribosomes and initiation complexes. ? Crystal structures, cryo-EM and biochemical data are combined to derive structural models of larger assemblies. ? Homology models of eukaryotic initiation complexes provide a starting point for future experiments.  相似文献   

4.
It has been proposed that intron and genome sizes in birds are reduced in comparison with mammals because of the metabolic demands of flight. To test this hypothesis, we examined the sizes of 14 introns in a nonflying relative of birds, the American alligator (Alligator mississippiensis), and in 19 flighted and flightless birds in 12 taxonomic orders. Our results indicate that a substantial fraction (66%) of the reduction in intron size as well as in genome size had already occurred in nonflying archosaurs. Using phylogenetically independent contrasts, we found that the proposed inverse correlation of genome size and basal metabolic rate (BMR) is significant among amniotes and archosaurs, whereas intron and genome size variation within birds showed no significant correlation with BMR. We show statistically that the distribution of genome sizes in birds and mammals is underdispersed compared with the Brownian motion model and consistent with strong stabilizing selection; that genome size differences between vertebrate clades are overdispersed and punctuational; and that evolution of BMR and avian intron size is consistent with Brownian motion. These results suggest that the contrast between genome size/BMR and intron size/BMR correlations may be a consequence of different intensities of selection for these traits and that we should not expect changes in intron size to be significantly associated with metabolically costly behaviors such as flight.  相似文献   

5.
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis.  相似文献   

6.
Abstract The HSP70 genes of eukaryotes show up to 50% nucleotide sequence homology to the dna K gene of Escherichia coli . This extreme structure conservation implies conservation of a function that may be needed by all cells, suggesting that other bacteria may have sequences related to HSP70 and dna K. Amongst other functions, HSP70-like proteins may act to limit thermal protein denaturation. In this study DNA isolated from thermophilic archaebacteria (from the family Desulfurococcus ) and thermophilic eubacteria (from the families Bacillus and Thermus ) was probed with sequences from a heat shock inducible HSP70 gene of the yeast Saccharomyces cerevisiae . Hybridization was detected under conditions of low stringency, indicating the existence of HSP70-related sequences in the thermophilic bacteria studied.  相似文献   

7.
8.
Metal ions promote both RNA folding and catalysis, thus being essential in stabilizing the structure and determining the function of large RNA molecules, including group II introns. The latter are self-splicing metalloribozymes, containing a heteronuclear four-metal-ion center within the active site. In addition to these catalytic ions, group II introns bind many other structural ions, including delocalized ions that bind the RNA diffusively and well-ordered ions that bind the RNA tightly with high occupancy. The latter ions, which can be studied by biophysical methods, have not yet been analyzed systematically. Here, we compare crystal structures of the group IIC intron from Oceanobacillus iheyensis and classify numerous site-bound ions, which are primarily localized in the intron core and near long-range tertiary contacts. Certain ion-binding sites resemble motifs observed in known RNA structures, while others are idiosyncratic to the group II intron. Particularly interesting are (1) ions proximal to the active site, which may participate in splicing together with the catalytic four-metal-ion center, (2) organic ions that bind regions predicted to interact with intron-encoded proteins, and (3) unusual monovalent ions bound to GU wobble pairs, GA mismatches, the S-turn, the tetraloop-receptor, and the T-loop. Our analysis extends the general principles by which ions participate in RNA structural organization and it will aid in the determination and interpretation of future RNA structures.  相似文献   

9.
The pathway for initiation of protein synthesis in eukaryotic cells has been defined and refined over the last 25 years using purified components and in vitro reconstituted systems. More recently, powerful genetic analysis in yeast has proved useful in unraveling aspects of translation inherently more difficult to address by strictly biochemical approaches. One area in particular is the functional analysis of multi-subunit protein factors, termed eukaryotic initiation factors (eIFs), that play an essential role in translation initiation. eIF-3, the most structurally complex of the eIFs, has until recently eluded this approach. The identification of the yeast GCD10 gene as the structural gene for the ζ subunit of yeast eIF-3(1) and the analysis of mutant phenotypes has opened the door to the genetic dissection of the eIF-3 protein complex.  相似文献   

10.
Pore-forming toxins (PFTs) are proteins that are secreted as soluble molecules and are inserted into membranes to form oligomeric transmembrane pores. In this paper, we report the crystal structure of Fragaceatoxin C (FraC), a PFT isolated from the sea anemone Actinia fragacea, at 1.8?? resolution. It consists of a crown-shaped nonamer with an external diameter of about 11.0?nm and an internal diameter of approximately 5.0?nm. Cryoelectron microscopy studies of FraC in lipid bilayers reveal the pore structure that traverses the membrane. The shape and dimensions of the crystallographic oligomer are fully consistent with the membrane pore. The FraC structure provides insight into the interactions governing the assembly process and suggests the structural changes that allow for membrane insertion. We propose a nonameric pore model that spans the membrane by forming a lipid-free α-helical bundle pore.  相似文献   

11.
12.
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit 'bizarre' secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading 'pseudogenes', even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders.  相似文献   

13.
Large-scale sequencing of the chimpanzee genome is now imminent. Beyond the inherent fascination of comparing the sequence of the human genome with that of our closest living relative, this project is likely to yield tangible scientific benefits in two areas. First, the discovery of functionally important mutations that are specific to the human lineage offers a new path towards medical benefits. Second, chimpanzee-human comparisons are likely to yield molecular insights into how new biological characteristics evolve--findings that might be relevant throughout the tree of life.  相似文献   

14.
Transposable elements and the evolution of genome size in eukaryotes   总被引:32,自引:2,他引:30  
Kidwell MG 《Genetica》2002,115(1):49-63
It is generally accepted that the wide variation in genome size observed among eukaryotic species is more closely correlated with the amount of repetitive DNA than with the number of coding genes. Major types of repetitive DNA include transposable elements, satellite DNAs, simple sequences and tandem repeats, but reliable estimates of the relative contributions of these various types to total genome size have been hard to obtain. With the advent of genome sequencing, such information is starting to become available, but no firm conclusions can yet be made from the limited data currently available. Here, the ways in which transposable elements contribute both directly and indirectly to genome size variation are explored. Limited evidence is provided to support the existence of an approximately linear relationship between total transposable element DNA and genome size. Copy numbers per family are low and globally constrained in small genomes, but vary widely in large genomes. Thus, the partial release of transposable element copy number constraints appears to be a major characteristic of large genomes.  相似文献   

15.
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.  相似文献   

16.
U12-dependent introns containing alterations of the 3' splice site AC dinucleotide or alterations in the spacing between the branch site and the 3' splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5' splice site AU dinucleotide, any nucleotide could serve as the 3'-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3' splice site function. A branch site-to-3' splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3' splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3' splice site but that formation of the prespliceosomal complex A requires an active 3' splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3' splice site.  相似文献   

17.
R C Levitt 《Genomics》1991,11(2):484-489
In this review we present preliminary evidence for a new class of polymorphism that may be used in a systematic way to map cDNAs efficiently and to expedite the construction of a high-resolution genetic map of the human genome. Ultimately, transcribed 3' untranslated polymorphisms will warrant further study because they should be widely distributed throughout the genome within transcribed sequences, and they can be readily identified as a result of cDNA cloning and sequencing. Furthermore, these markers should be universally available on the basis of the sequence data and highly useful in linkage analyses.  相似文献   

18.
张琇  陈海魁  张学贤 《微生物学报》2019,59(8):1411-1418
假单胞菌铁载体(Pvd)的产生是社会微生物学研究的一个重要模式系统:产生菌是合作者,而不产生菌是欺诈者。欺诈者可以不用付出Pvd合成的能量代价,而利用其他细菌产生的Pvd来获取生长所需的铁离子,因而处于竞争优势地位。合作与欺诈成为了当前解释自然界广泛存在的Pvd不产生菌进化形成的主要原理。本文将阐述荧光假单胞菌Pvd不产生菌形成的多条进化途径,并在此基础上剖析合作与欺诈原理的普遍适用性问题。  相似文献   

19.
Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells.  相似文献   

20.
Umami and sweet sensations provide animals with important dietary information for detecting and consuming nutrients, whereas bitter sensation helps animals avoid potentially toxic or harmful substances. Enormous progress has been made toward animal sweet/umami taste receptor (Tas1r) and bitter taste receptor (Tas2r). However, information about amphibians is mainly scarce. This study attempted to delineate the repertoire of Tas1r/Tas2r genes by searching for currently available genome sequences in 14 amphibian species. This study identified 16 Tas1r1, 9 Tas1r2, and 9 Tas1r3 genes to be intact and another 17 Tas1r genes to be pseudogenes or absent in the 14 amphibians. According to the functional prediction of Tas1r genes, two species have lost sweet sensation and seven species have lost both umami and sweet sensations. Anurans possessed a large number of intact Tas2rs, ranging from 39 to 178. In contrast, caecilians possessed a contractive bitter taste repertoire, ranging from 4 to 19. Phylogenetic and reconciling analysis revealed that the repertoire of amphibian Tas1rs and Tas2rs was shaped by massive gene duplications and losses. No correlation was found between feeding preferences and the evolution of Tas1rs in amphibians. However, the expansion of Tas2rs may help amphibians adapt to both aquatic and terrestrial habitats. Bitter detection may have played an important role in the evolutionary adaptation of vertebrates in the transition from water to land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号