首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasmodium falciparum (P. falciparum) secretes hundreds of proteins--including major virulence proteins--into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidence only exists for P. falciparum. Here, we show that in the rodent malaria parasite Plasmodium berghei (P. berghei) a reporter-like green fluorescent protein expressed by the parasite can be exported to the erythrocyte cytoplasm in a HT-specific manner. This provides the first experimental proof that the HT motif can function as a signal for protein delivery to the erythrocyte across Plasmodium species. Further, it suggests that P. berghei may serve as a model for validation of P. falciparum secretome proteins. We also show that tubovesicular membranes extend from the vacuolar parasite into the erythrocyte cytoplasm and speculate that these structures may facilitate protein export to the erythrocyte.  相似文献   

2.
The malaria agent Plasmodium falciparum is predicted to export a "secretome" of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of approximately 70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed approximately 75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen.  相似文献   

3.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

4.
During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the vasculature. Knob formation on the surface of infected erythrocytes is critical for this cytoadherence to the host endothelium. P. falciparum proteins have been identified that localize to the parasite-infected erythrocyte membrane: the variant cytoadherence ligand erythrocyte membrane protein 1 (PfEMP1), the knob-associated histidine-rich protein (KAHRP) and the erythrocyte membrane protein 3 (PfEMP3). In this study, we have generated parasites expressing PfEMP3-green fluorescent protein chimeras and identified domains involved in entry to the secretory pathway, export across the parasitophorous vacuolar membrane and attachment to Maurer's clefts and the erythrocyte membrane. Solubility assays, fluorescence photobleaching experiments and immunogold electron microscopy suggest that the exported chimeric proteins are trafficked in a complex rather than in vesicles. This study characterizes elements involved in the tight but transient binding of PfEMP3 to Maurer's clefts and shows that the same elements are necessary for correct assembly under the erythrocyte membrane.  相似文献   

5.
Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.  相似文献   

6.
During the development of the asexual stage of the malaria parasite, Plasmodium falciparum, the composition, structure and function of the host cell membrane is dramatically altered, including the ability to adhere to vascular endothelium. Crucial to these changes is the transport of parasite proteins, which become associated with or inserted into the erythrocyte membrane. Protein and membrane targeting beyond the parasite plasma membrane must require unique pathways, given the parasites intracellular location within a parasitophorous vacuolar membrane and the lack of organelles and biosynthetic machinery in the host cell necessary to support a secretory system. It is not clear how these proteins cross the parasitophorous vacuolar membrane or how they traverse the erythrocyte cytosol to reach their final destinations. The identification of: (1) a P. falciparum homologue of the protein Sar1p, which is an essential component of the COPII-based secretory system in mammalian cells and yeast and (2) electron-dense, possibly coated, secretory vesicles bearing P. falciparum erythrocyte membrane protein 1 and P. falciparum erythrocyte membrane protein 3 in the host cell cytosol of P. falciparum infected erythrocytes recently provided the first direct evidence of a vesicle-mediated pathway for the trafficking of some parasite proteins to the erythrocyte membrane. The major advance in uncovering the parasite-induced secretory pathway was made by incubating infected erythrocytes with aluminium tetrafluoride, an activator of guanidine triphosphate-binding proteins, which resulted in the accumulation of the vesicles into multiple vesicle strings. These vesicle complexes were often associated with and closely abutted the erythrocyte membrane, but were apparently prevented from fusing by the aluminium fluoride treatment, making their capture by electron microscopy possible. It appears that malaria parasites export proteins into the host cell cytosol to support a vesicle-mediated protein trafficking pathway.  相似文献   

7.
This work describes two unusual features of membrane development in a eukaryotic cell. (a) The induction of an extensive network of tubovesicular membranes by the malaria parasite Plasmodium falciparum in the cytoplasm of the mature erythrocyte, and its visualization with two ceramide analogues C5-DMB-ceramide and C6-NBD-ceramide. "Sectioning" of the infected erythrocytes using laser confocal microscopy has allowed the reconstruction of detailed three-dimensional images of this novel membrane network. (b) The stage-specific export of sphingomyelin synthase, a biosynthetic activity concentrated in the Golgi of mammalian cells, to this tubovesicular network. Evidence is presented that in the extracellular merozoite stage the parasite retains sphingomyelin synthase within its plasma membrane. However, intracellular ring- and trophozoite-stage parasites export a substantial fraction (approximately 26%) of sphingomyelin synthase activity to membranes beyond their plasma membrane. Importantly we do not observe synthesis of new enzyme during these intracellular stages. Taken together these results strongly suggest that the export of this classic Golgi enzyme is developmentally regulated in Plasmodium. We discuss the significance of this export and the tubovesicular network with respect to membrane development and function in the erythrocyte cytosol.  相似文献   

8.
The human malaria parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within the host erythrocyte, including the erythrocyte cytoplasm, plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. Most of the exported proteins contain a conserved pentameric motif termed plasmodial export element (PEXEL)/vacuolar transfer signal (VTS) that functions as a cleavable sorting signal permitting export to the host erythrocyte. However, there are some exported proteins, such as the skeleton-binding protein 1 (PfSBP1) that lack the PEXEL/VTS motif and that are not N-terminally processed, suggesting the presence of alternative sorting signals and/or mechanisms. In this study, we have investigated trafficking of PfSBP1 to the Maurer's clefts. Our data show that the transmembrane domain of PfSBP1 functions as an internal signal sequence for entry into the parasite's secretory pathway and for transport to the parasite plasma membrane. Trafficking beyond the parasite's plasma membrane required additional N-terminal domains, which are characterized by a high negative net charge. Biochemical data indicate that these domains affect the solubility and extraction profile, the orientation of the protein within the membrane and the subcellular localization. Our findings suggest new principles of protein export in P.   falciparum -infected erythrocytes.  相似文献   

9.
Blood stages of Plasmodium falciparum export proteins into their erythrocyte host, thereby inducing extensive host cell modifications that become apparent after the first half of the asexual development cycle (ring stage). This is responsible for a major part of parasite virulence. Export of many parasite proteins depends on a sequence motif termed Plasmodium export element (PEXEL) or vacuolar transport signal (VTS). This motif has allowed the prediction of the Plasmodium exportome. Using published genome sequence, we redetermined the boundaries of a previously studied region linked to P. falciparum virulence, reducing the number of candidate genes in this region to 13. Among these, we identified a cluster of four ring stage-specific genes, one of which is known to encode an exported protein. We demonstrate that all four genes code for proteins exported into the host cell, although only two genes contain an obvious PEXEL/VTS motif. We propose that the systematic analysis of ring stage-specific genes will reveal a cohort of exported proteins not present in the currently predicted exportome. Moreover, this provides further evidence that host cell remodeling is a major task of this developmental stage. Biochemical and photobleaching studies using these proteins reveal new properties of the parasite-induced membrane compartments in the host cell. This has important implications for the biogenesis and connectivity of these structures.  相似文献   

10.
The human malarial parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within its host erythrocyte, including the cytoplasm, the plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. While there is some information regarding the signals that allot proteins for export, the trafficking route itself has remained largely obscure, partly due to technical limitations in following protein trafficking with time. To overcome these shortcomings, we have established a conditional protein export system in P. falciparum, based on the previously described conditional aggregation domain (CAD domain) that self-aggregates in the endoplasmic reticulum in a manner that is reversible by the addition of a small molecule. By fusing the CAD domain to the first 80 amino acids of STEVOR and full-length PfSBP1, we were able to control export of a soluble and a transmembrane protein to the erythrocyte cytosol and the Maurer's clefts respectively. The conditional export system allowed us to study the temporal sequence of events of protein export and identify intermediate steps. We further explored the potential of the conditional export system in identifying factors that interact with exported proteins en route. Our data provide evidence for a physical interaction of exported proteins with the molecular chaperone PfBiP during early export steps.  相似文献   

11.
Protein export from Plasmodium parasites   总被引:4,自引:0,他引:4  
Many prokaryotic and eukaryotic intracellular pathogens survive by altering the host cell through the export of proteins. In contrast to the well-studied prokaryotic export systems, knowledge of protein export in eukaryotic pathogens is scant. The recent discovery that a short protein sequence targets a protein for export from the malaria parasite Plasmodium falciparum has shed light on the possible mechanism of proteins export and has allowed the preliminary identification of several hundred exported proteins. Among the exported proteins are the members of the paralogous protein families, previously identified exported proteins and many uncharacterized proteins. The interaction of the parasite with the host cell is thus much more complex, and involves more parasite proteins, than previously thought.  相似文献   

12.
A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.  相似文献   

13.
14.
During the intra-erythrocytic development of Plasmodium falciparum, the parasite modifies the host cell surface by exporting proteins that interact with or insert into the erythrocyte membrane. These proteins include the principal mediator of cytoadherence, P. falciparum erythrocyte membrane protein 1 (PfEMP1). To implement these changes, the parasite establishes a protein-trafficking system beyond its confines. Membrane-bound structures called Maurer's clefts are intermediate trafficking compartments for proteins destined for the host cell membrane. We disrupted the gene for the membrane-associated histidine-rich protein 1 (MAHRP1). MAHRP1 is not essential for parasite viability or Maurer's cleft formation; however, in its absence, these organelles become disorganized in permeabilized cells. Maurer's cleft-resident proteins and transit cargo are exported normally in the absence of MAHRP1; however, the virulence determinant, PfEMP1, accumulates within the parasite, is depleted from the Maurer's clefts and is not presented at the red blood cell surface. Complementation of the mutant parasites with mahrp1 led to the reappearance of PfEMP1 on the infected red blood cell surface, and binding studies show that PfEMP1-mediated binding to CD36 is restored. These data suggest an important role of MAHRP1 in the translocation of PfEMP1 from the parasite to the host cell membrane.  相似文献   

15.
Malaria parasites modify their host cell, the mature human erythrocyte. We are interested in the molecules mediating these processes, and have recently described a family of parasite‐encoded heat shock proteins (PfHsp40s) that are targeted to the host cell, and implicated in host cell modification. Hsp40s generally function as co‐chaperones of members of the Hsp70 family, and until now it was thought that human Hsp70 acts as the PfHsp40 interaction partner within the host cell. Here we revise this hypothesis, and identify and characterize an exported parasite‐encoded Hsp70, referred to as PfHsp70‐x. PfHsp70‐x is exported to the host erythrocyte where it forms a complex with PfHsp40s in structures known as J‐dots, and is closely associated with PfEMP1. Interestingly, Hsp70‐x is encoded only by parasite species that export the major virulence factor EMP1, implying a possible role for Hsp70‐x in EMP1 presentation at the surface of the infected erythrocyte. Our data strongly support the presence of parasite‐encoded chaperone/co‐chaperone complexes within the host erythrocyte, which are involved in protein traffic through the host cell. The host–pathogen interaction within the infected erythrocyte is more complex than previously thought, and is driven notonly by parasite co‐chaperones, but also by the parasite‐encoded chaperone Hsp70‐x itself.  相似文献   

16.
Early development of Plasmodium falciparum within the erythrocyte is characterized by the large-scale export of proteins to the host cell. In many cases, export is mediated by a short sequence called the Plasmodium export element (PEXEL) or vacuolar transport signal; however, a number of previously characterized exported proteins do not contain such an element. In this study, we investigated the mechanisms of export of the PEXEL-negative ring exported protein 1 (REX1). This protein localizes to the Maurer's clefts, parasite-induced structures in the host-cell cytosol. Transgenic parasites expressing green fluorescent protein–REX1 chimeras revealed that the single hydrophobic stretch plus an additional 10 amino acids mediate the export of REX1. Biochemical characterization of these chimeras indicated that REX1 was exported as a soluble protein. Inclusion of a sequence containing a predicted coiled-coil motif led to the correct localization of REX1 at the Maurer's clefts, suggesting that association with the clefts occurs at the final stage of protein export only. These results indicate that PEXEL-negative exported proteins can be exported in a soluble state and that sequences without any apparent resemblance to a PEXEL motif can mediate export across the parasitophorous vacuole membrane.  相似文献   

17.
Plasmodium falciparum, which causes malaria, extensively remodels its human host cells, particularly erythrocytes. Remodelling is essential for parasite survival by helping to avoid host immunity and assisting in the uptake of plasma nutrients to fuel rapid growth. Host cell renovation is carried out by hundreds of parasite effector proteins that are exported into the erythrocyte across an enveloping parasitophorous vacuole membrane (PVM). The Plasmodium translocon for exported (PTEX) proteins is thought to span the PVM and provide a channel that unfolds and extrudes proteins across the PVM into the erythrocyte. We show that exported reporter proteins containing mouse dihydrofolate reductase domains that inducibly resist unfolding become trapped at the parasite surface partly colocalizing with PTEX. When cargo is trapped, loop‐like extensions appear at the PVM containing both trapped cargo and PTEX protein EXP2, but not additional components HSP101 and PTEX150. Following removal of the block‐inducing compound, export of reporter proteins only partly recovers possibly because much of the trapped cargo is spatially segregated in the loop regions away from PTEX. This suggests that parasites have the means to isolate unfoldable cargo proteins from PTEX‐containing export zones to avert disruption of protein export that would reduce parasite growth.   相似文献   

18.
The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum -infected erythrocyte.  相似文献   

19.
The human malaria parasite Plasmodium falciparum develops in a parasitophorous vacuolar membrane (PVM) within the mature red cell and extensively modifies structural and antigenic properties of this host cell. Recent studies shed significant new, mechanistic perspective on the underlying processes. There is finally, definitive evidence that despite the absence of endocytosis, transmembrane proteins in the host red cell membrane are imported in to the PVM. These are not major erythrocyte proteins but components that reside in detergent resistant membrane (DRM) rafts in red cell membrane and are detected in rafts in the PVM. Disruption of either erythrocyte or vacuolar rafts is detrimental to infection suggesting that raft proteins and lipids are essential for the parasitization of the red cell. On secretory export of parasite proteins: an ER secretory signal (SS) sequence is required for protein secretion to the PV. Proteins carrying an additional plastid targeting sequence (PTS) are also detected in the PV but subsequently delivered to the plastid organelle within the parasite, suggesting that the PTS may have a second function as an endocytic sorting signal. A distinct but yet undefined peptidic motif underlies protein transport across the PVM to the red cell (although all of the published data does not yet fit this model). Further multiple exported proteins transit through secretory 'cleft' structures, suggesting that clefts may be sorting compartments assembled by the parasite in the red cell.  相似文献   

20.
Plasmodium falciparum is a protozoan parasite that causes the most virulent o f human malarias. The asexual blood-stage organism invades and multiplies in a vacuole in the mature erythrocyte. During intravacuolar growth, it induces the formation of a novel network o f tubovesicular membranes, the TVM, that is not present in uninfected red blood cells. Recent data suggest that sphingomyelin biosynthesis by the parasite is an essential requirement for the assembly o f the TVM. Furthermore, sphingolipid synthesis as well as the formation and function o f the TVM may provide new targets for chemotherapy against malaria parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号