首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cleavage and polyadenylation specificity factor (CPSF) is an important multi-subunit component of the mRNA 3′-end processing apparatus in eukaryotes. The Arabidopsis genome contains five genes encoding CPSF homologues (AtCPSF160, AtCPSF100, AtCPSF73-I, AtCPSF73-II and AtCPSF30). These CPSF homologues interact with each other in a way that is analogous to the mammalian CPSF complex or their yeast counterparts, and also interact with the Arabidopsis poly(A) polymerase (PAP). There are two CPSF73 like proteins (AtCPSF73-I and AtCPSF73-II) that share homology with the 73 kD subunit of the mammalian CPSF complex. AtCPSF73-I appears to correspond to the functionally characterized mammalian CPSF73 and its yeast counterpart. AtCPSF73-II was identified as a novel protein with uncharacterized protein homologues in other multicellular organisms, but not in yeast. Both of the AtCPSF73 proteins are targeted in the nucleus and were found to interact with AtCPSF100. They are also essential since knockout or knockdown mutants are lethal. In addition, the expression level of AtCPSF73-I is critical for Arabidopsis development because overexpression of AtCPSF73-I is lethal. Interestingly, transgenic plants carrying an additional copy of the AtCPSF73-I gene, that is, the full-length cDNA under the control of its native promoter, appeared normal but were male sterile due to delayed anther dehiscence. In contrast, we previously demonstrated that a mutation in the AtCPSF73-II gene was detrimental to the genetic transmission of female gametes. Thus, two 73 kD subunits of the AtCPSF complex appear to have special functions during flower development. The important roles of mRNA 3′-end processing machinery in modulating plant development are discussed. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Gene accession numbers associated with this paper: AY140902, AY140900, AY168923, AY140901  相似文献   

3.
Star-PAP is a poly (A) polymerase (PAP) that is putatively required for 3'-end cleavage and polyadenylation of a select set of pre-messenger RNAs (mRNAs), including heme oxygenase (HO-1) mRNA. To investigate the underlying mechanism, the cleavage and polyadenylation of pre-mRNA was reconstituted with nuclear lysates. siRNA knockdown of Star-PAP abolished cleavage of HO-1, and this phenotype could be rescued by recombinant Star-PAP but not PAPα. Star-PAP directly associated with cleavage and polyadenylation specificity factor (CPSF) 160 and 73 subunits and also the targeted pre-mRNA. In vitro and in vivo Star-PAP was required for the stable association of CPSF complex to pre-mRNA and then CPSF 73 specifically cleaved the mRNA at the 3'-cleavage site. This mechanism is distinct from canonical PAPα, which is recruited to the cleavage complex by interacting with CPSF 160. The data support a model where Star-PAP binds to the RNA, recruits the CPSF complex to the 3'-end of pre-mRNA and then defines cleavage by CPSF 73 and subsequent polyadenylation of its target mRNAs.  相似文献   

4.
目的:研究CPSF在真核表达载体上的克隆与瞬时表达。方法:以质粒pBS1761为模板扩增TAP-tag片段,PCR产物经纯化后克隆在真核表达载体pTRE2-hyg上。再以pUK-CPSF30k、73k、100k为模板扩增CPSF基因片段,将其克隆在质粒pTRE2-hyg-TAP-tag中TAP-tag片段的下游,并将重组质粒转化入细胞株Hela Tet-offS3细胞内。结果:细胞抽提液经SDS PAGE电泳后进行蛋白质印迹杂交,胶片上出现野生型的CPSF条带和分子量较大的滞后条带。后者经分子量与分子标记对照,确系重组体TAP-tag-CPSF所表达的蛋白条带。结论:重组质粒pTRE2hyg-TAP-tag-CPSF30k,73k,100k在Hela tet-offS3内完好表达。  相似文献   

5.
6.
7.
The Arabidopsis genome possesses a number of sequences that are predicted to encode proteins that are similar to mammalian and yeast polyadenylation factor subunits. One of these resides on chromosome V and has the potential to encode a polypeptide related to the 100 kDa subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF). This gene encodes a ca. 2400 nucleotide mRNA that in turn can be translated to yield a polypeptide that is 39% identical to the mammalian CPSF100 protein. Antibodies raised against the Arabidopsis protein recognized distinctive polypeptides in nuclear extracts prepared from pea and wheat germ, consistent with the hypothesis that the Arabidopsis protein is resident in a nuclear polyadenylation complex. Interestingly, the Arabidopsis CPSF100 was found to interact with a portion of a nuclear poly(A) polymerase. This interaction was attributable to a 60 amino acid domain in the CPSF100 polypeptide and the N-terminal 220 amino acids of the poly(A) polymerase. An analogous interaction has yet to be described in other eukaryotes. The interaction with PAP thus indicates that the plant CPSF100 polypeptide is likely part of the 3-end processing machinery, but suggests that this complex may function differently in plants than it does in mammals and yeast.  相似文献   

8.
Formation of the mature 3' ends of the vast majority of cellular mRNAs occurs through cleavage and polyadenylation and requires a cleavage and polyadenylation specificity factor (CPSF) containing, among other proteins, CPSF-73 and CPSF-100. These two proteins belong to a superfamily of zinc-dependent beta-lactamase fold proteins with catalytic specificity for a wide range of substrates including nucleic acids. CPSF-73 contains a zinc-binding histidine motif involved in catalysis in other members of the beta-lactamase superfamily, whereas CPSF-100 has substitutions within the histidine motif and thus is unlikely to be catalytically active. Here we describe two previously unknown human proteins, designated RC-68 and RC-74, which are related to CPSF-73 and CPSF-100 and which form a complex in HeLa and mouse cells. RC-68 contains the intact histidine motif, and hence it might be a functional counterpart of CPSF-73, whereas RC-74 lacks this motif, thus resembling CPSF-100. In HeLa cells RC-68 is present in both the cytoplasm and the nucleus whereas RC-74 is exclusively nuclear. RC-74 does not interact with CPSF-73, and neither RC-68 nor RC-74 is found in a complex with CPSF-160, indicating that these two proteins form a separate entity independent of the CPSF complex and are likely involved in a pre-mRNA processing event other than cleavage and polyadenylation of the vast majority of cellular pre-mRNAs. RNA interference-mediated depletion of RC-68 arrests HeLa cells early in G(1) phase, but surprisingly the arrested cells continue growing and reach the size typical of G(2) cells. RC-68 is highly conserved from plants to humans and may function in conjunction with RC-74 in the 3' end processing of a distinct subset of cellular pre-mRNAs encoding proteins required for G(1) progression and entry into S phase.  相似文献   

9.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage. Received: 6 June 1997 / Accepted: 5 November 1997  相似文献   

10.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage.  相似文献   

11.
12.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

13.
3′-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3′-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3′-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem–loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation—CPSF, CstF, and CF Im—are present in Drosophila nuclear extracts in a stable supercomplex.  相似文献   

14.
15.
16.
17.
Animal replication-dependent histone pre-mRNAs are processed at the 3′ end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes—one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.  相似文献   

18.
19.
20.
The NS1A protein of influenza A virus binds the cellular CPSF30 protein, thereby inhibiting the 3′-end processing of all cellular pre-mRNAs, including beta interferon pre-mRNA. X-ray crystallography identified the CPSF30-binding pocket on the influenza virus A/Udorn/72 (Ud) NS1A protein and the critical role of two hydrophobic NS1A amino acids outside the pocket, F103 and M106, in stabilizing the CPSF30-NS1A complex. Although the NS1A protein of the 1997 H5N1 influenza A/Hong Kong/483/97 (HK97) virus contains L (not F) at position 103 and I (not M) at position 106, it binds CPSF30 in vivo to a significant extent because cognate (HK97) internal proteins stabilize the CPSF30-NS1A complex in infected cells. Here we show that the cognate HK97 polymerase complex, containing the viral polymerase proteins (PB1, PB2, and PA) and the nucleocapsid protein (NP), is responsible for this stabilization. The noncognate Ud polymerase complex cannot carry out this stabilization, but it can stabilize CPSF30 binding to a mutated (F103L M106I) cognate Ud NS1A protein. These results suggested that the viral polymerase complex is an integral component of the CPSF30-NS1A protein complex in infected cells even when the cognate NS1A protein contains F103 and M106, and we show that this is indeed the case. Finally, we show that cognate PA protein and NP, but not cognate PB1 and PB2 proteins, are required for stabilizing the CPSF30-NS1A complex, indicating that the NS1A protein interacts primarily with its cognate PA protein and NP in a complex that includes the cellular CPSF30 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号