首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using high-resolution oxygraphy, we tested the changes of various parameters characterizing the mitochondrial energy provision system that were induced by peroxidative damage. In the presence of succinate as respiratory substrate, 3 mM t-butyl hydroperoxide increased respiration in the absence of ADP, which indicated partial uncoupling of oxidative phosphorylation. Low activity of coupled respiration was still maintained as indicated by the ADP-activated and oligomycin-inhibited respiration. However, during the incubation the phosphorylative capacity decreased as indicated by the continuous decrease of the mitochondrial membrane potential. Under these experimental conditions the maximum capacity of the succinate oxidase system was inhibited by 50% in comparison with values obtained in the absence of t-butyl hydroperoxide. Our data thus indicate that the oxygraphic evaluation of mitochondrial function represents a useful tool for evaluation of changes participating in peroxidative damage of cell energy metabolism.  相似文献   

2.
The effects of amiloride on Na+ ion influx, amino acid transport, protein synthesis and RNA synthesis have been studied in isolated rat hepatocytes. The initial rate of 22Na+ uptake and the amount of 22Na+ taken up at later time points were decreased in hepatocytes incubated in the presence of amiloride. Amiloride inhibited by about 25% the influx of α-methylamino[1?14C]isobutyric acid, a specific substrate for the A (Alanine preferring) system of neutral amino acid transport. By contrast, the activity of system L (Leucine preferring) was not affected by amiloride. Rates of protein synthesis were determined by using high extracellular concentrations of [14C]valine in order to maintain a constant amino acid precursor pool. Amiloride inhibited protein synthesis by 85% and had no effect on RNA synthesis. Half-maximal inhibition of protein synthesis occurred with amiloride at about 150 μM. In the absence of Na+ in the incubation medium, the rate of protein synthesis was reduced by about 35% and no further inhibition was observed with amiloride. These results suggest that in isolated rat hepatocytes protein synthesis is partially dependent on Na+, and that amiloride is an efficient inhibitor of protein synthesis.  相似文献   

3.
Vanadate inhibits protein degradation in isolated rat hepatocytes   总被引:4,自引:0,他引:4  
Vanadate (10 mM) strongly inhibited endogenous protein degradation as well as the degradation of an exogenous, endocytosed protein (asialofetuin) in isolated rat hepatocytes. Protein synthesis and cellular viability were unaffected, but changes in cell morphology suggested some interference with cytoskeletal elements. The effect of vanadate was comparable to the effects of several other degradation inhibitors (lysosomotropic amines, leupeptin, vinblastine, amino acids, dimethylaminopurine riboside) known to inhibit the autophagic/lysosomal pathway of protein degradation. Vanadate inhibited proteolysis in a liver homogenate at pH 5, suggesting a direct effect upon the lysosomal proteinases.  相似文献   

4.
Seven cytosolic enzymes with varying half-lives (ornithine decarboxylase, 0.9 h; tyrosine aminotransferase, 3.1 h; tryptophan oxygenase, 3.3 h; serine dehydratase, 10.3 h; glucokinase, 12.7 h; lactate dehydrogenase, 17.0 h; aldolase, 17.4 h) were found to be autophagically sequestered at the same rate (3.5%/h) in isolated rat hepatocytes. Autophagy was measured as the accumulation of enzyme activity in the sedimentable organelles (mostly lysosomes) of electrodisrupted cells in the presence of the proteinase inhibitor leupeptin. Inhibitors of lysosomal fusion processes (vinblastine and asparagine) allowed accumulation of catalytically active enzyme (in prelysosomal vacuoles) even in the absence of proteolytic inhibition, showing that no inactivation step took place before lysosomal proteolysis. The completeness of protection by leupeptin indicates, furthermore, that a lysosomal cysteine proteinase is obligatorily required for the initial proteolytic attack upon autophagocytosed proteins. The experiments suggest that sequestration and degradation of normal cytosolic proteins by the autophagic-lysosomal pathway is a nonselective bulk process, and that nonautophagic mechanisms must be invoked to account for differential enzyme turnover.  相似文献   

5.
6.
Ellagic acid, a plant polyphenol, showed protective effect on isolated rat hepatocytes against destruction due to lipid peroxide formation induced by t-butyl hydroperoxide in vitro. Ellagic acid inhibited the generation of superoxide anions and hydroxyl radicals both in enzymic and non enzymic systems, thus providing protection against oxidative damage.  相似文献   

7.
The fluorescent dye rhodamine 123 (R123) decreases the intracellular ATP levels and also inhibits the degradation of short-lived proteins in isolated hepatocytes. This inhibition affects lysosomal and, to some extent, non-lysosomal mechanisms. The degradation of short-lived proteins decreases more when ATP levels are less than 40% of those in control cells, in contrast to the reported linear correlation between ATP levels and degradation of long-lived proteins. R123 provides a powerful probe for clarifying the proteolytic mechanisms involved in degradation of short-lived proteins and the ATP requirements in protein degradation. Indeed, as illustrated, the results suggest different mechanisms for the degradation of short- and long-lived proteins. Moreover, they provide a warning for the clinical use of this reagent.  相似文献   

8.
In isolated hepatocytes from fasted rats, 0.5 mM adenosine inhibited gluconeogenesis from glutamine, lactate and pyruvate. This inhibition was due to adenosine conversion through adenosine kinase. An increase in ketone body release was only observed in the presence of lactate or pyruvate, and the two phenomena (i.e. inhibition of gluconeogenesis and increased ketone-body release) were linked. With alanine, dihydroxyacetone or serine as substrates, adenosine did not change gluconeogenesis; however, its conversion through adenosine kinase also inhibited gluconeogenesis. With asparagine as substrate, 0.5 mM adenosine increased gluconeogenesis; this increase was due to adenosine conversion through adenosine deaminase. However, adenosine conversion through adenosine kinase inhibited gluconeogenesis from asparagine. Thus, whatever the substrate used, adenosine conversion through adenosine kinase inhibited gluconeogenesis. The inhibitory effect of adenosine on gluconeogenesis cannot be related to the decrease in Pi concentration and to the increase in ATP pool. Beside its effect on gluconeogenesis, adenosine inhibited ketogenesis measured without added substrate; adenosine conversion through adenosine kinase was also involved in the inhibition of ketogenesis.  相似文献   

9.
Cholesterogenesis pathway during pre- and postnatal development was studied in isolated rat hepatocytes. No modified activity of cytosol acetoacetyl coenzyme A (CoA), thiolase, or 3-hydroxy-3-methylglutaryl CoA (HMGCoA) synthase was detectable at the different stages examined. Minimal levels of 1(14)C-acetate incorporation into cholesterol and HMGCoA reductase activity were present at 16 days of fetal development in newborn and suckling rats, whereas both parameters increased rapidly before birth. The pattern of NaF nonsuppressible reductase activity showed a different activation state of the enzyme, suggesting the appearance of a modulation state, probably related to the development of some short-term regulatory mechanisms.  相似文献   

10.
The majority of toxic agents act either fully or partially via oxidative stress, the liver, specifically the mitochondria in hepatocytes, being the main target. Maintenance of mitochondrial function is essential for the survival and normal performance of hepatocytes, which have a high energy requirement. Therefore, greater understanding of the role of mitochondria in hepatocytes is of fundamental importance. Mitochondrial function can be analysed in several basic models: hepatocytes cultured in vitro; mitochondria in permeabilised hepatocytes; and isolated mitochondria. The aim of our study was to use all of these approaches to evaluate changes in mitochondria exposed in vitro to a potent non-specific peroxidating agent, tert-butylhydroperoxide (tBHP), which is known to induce oxidative stress. A decrease in the mitochondrial membrane potential (MMP) was observed in cultured hepatocytes treated with tBHP, as illustrated by a significant reduction in Rhodamine 123 accumulation and by a decrease in the fluorescence of the JC-1 molecular probe. Respiratory Complex I in the mitochondria of permeabilised hepatocytes showed high sensitivity to tBHP, as documented by high-resolution respirometry. This could be caused by the oxidation of NADH and NADPH by tBHP, followed by the disruption of mitochondrial calcium homeostasis, leading to the collapse of the MMP. A substantial decrease in the MMP, as determined by tetraphenylphosphonium ion-selective electrode measurements, also confirmed the dramatic impact of tBHP-induced oxidative stress on mitochondria. Swelling was observed in isolated mitochondria exposed to tBHP, which could be prevented by cyclosporin A, which is evidence for the role of mitochondrial permeability transition. Our results demonstrate that all of the above-mentioned models can be used for toxicity assessment, and the data obtained are complementary.  相似文献   

11.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

12.
13.
Isolated hepatocytes were incubated with L-cycloserine and then treated with digitonin so that mitochondrial and cytosolic fractions were obtained in 5 s. Mitochondrial and total cellular aspartate aminotransferases (EC 2.6.1.1) were inactivated in parallel. The enzyme was also inhibited in isolated mitochondria incubated with L-cycloserine. These results, in contrast with previous reports, indicate that cycloserine reacts equally with mitochondrial and cytosolic aspartate aminotransferases.  相似文献   

14.
Although the pathway for glucose synthesis from lactate in avian liver is not thought to involve transamination steps, inhibitors of transamination (aminooxyacetate and L-2-amino-4-methoxy-trans-3-butenoic acid) block lactate gluconeogenesis by isolated chicken hepatocytes. Inhibition of glucose synthesis from lactate by aminooxyacetate is accompanied by a large increase in the lactate-to-pyruvate ratio. Oleate largely relieves inhibition by aminooxyacetate and lowers the lactate-to-pyruvate ratio. In parallel studies with rat hepatocytes, oleate did not overcome aminooxyacetate inhibition of glucose synthesis. The ratios of lactate used to glucose formed were greater than 2 with both rat and chicken hepatocytes, were increased by aminooxyacetate, and were restored toward 2 by oleate. Thus, in the absence of oleate, lactate is oxidized to provide the energy needed to meet the metabolic demand of chicken hepatocytes. Excess cytosolic reducing equivalents generated by the oxidation of lactate to pyruvate are transferred from the cytosol to the mitosol by the malate-aspartate shuttle. Aminooxyacetate inhibits the shuttle and, consequently, glucose synthesis for want of pyruvate.  相似文献   

15.
16.
Calcium transport in isolated rat hepatocytes   总被引:6,自引:0,他引:6  
  相似文献   

17.
Cryopreservation of isolated rat hepatocytes   总被引:4,自引:0,他引:4  
Summary Isolated parenchymal hepatocytes from adult rats were frozen in media containing 10% glycerol, 10% dimethylsulfoxide (DMSO), or 20% DMSO. Three microsome-associated functions were compared in nonfrozen cells and cells frozen in each of the above cryoprotectant solutions. Freezing in DMSO maintains cytochromes P-450 and b5 and NADPH-cytochrome C reductase at levels nearer to control values than does freezing in glycerol. Cells frozen and subsequently thawed and cultured for 24 h lose a greater amount of cytochrome P-450 than do nonfrozen cultured cells. The levels of cytochrome b5 and reductase in frozen-thawed cells remain close to control values. Cell viability (trypan blue dye exclusion and percentage of attached cells) after freezing is maintained better using DMSO as a cryoprotectant. Dimethylsulfoxide protects the hepatocytes from freeze-induced damage to the extent that many viable cells attach to collagen-coated petri dishes, survive for at least 24 h, and still maintain significant levels of enzymes of importance to drug and carcinogen metabolism. This work was supported by Grant CA-30241 from the National Institutes of Health, Bethesda, Maryland.  相似文献   

18.
19.
Bile acid synthesis in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Normal adult rat hepatocytes were incubated for 48h and the concentration of total and individual bile acids in homogenized samples of the culture was measured at intervals during the incubation, using radiogas chromatography and isotope derivative assay. The net increase in bile acids over the value observed at the start of the culture was taken as synthesis. The results showed that bile acid synthesis was linear up to 24h of incubation, at a rate of 20nmol/g hepatocytes per hour, and that 85% of the newly synthesized bile acid was cholic acid. The bile acid synthesized was mainly conjugated with taurine. These results suggest that isolated hepatocytes cultured in the way described could be a useful in vitro model for the study of bile acid synthesis.  相似文献   

20.
The production of hydrogen peroxide by isolated hepatocytes in response to lauric, palmitic and oleic acids, a measurement of peroxisomal fatty acid oxidation, is inhibited by phenothiazines under conditions in which ketone body production, a measurement of mitochondrial fatty acid oxidation, does not reveal inhibition of mitochondrial activity. This novel finding provides a pharmacological tool for the study of peroxisomal function in whole cells. The mechanism of this effect of phenothiazines, detected in hepatocytes from rats treated with a peroxisome proliferation inducing drug, is not yet known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号