首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a dissolved oxygen (DO) probe is submerged in an air-saturated cell culture medium the thickness of the liquid film that exists outside the membrane of a DO probe changes with hydrodynamic shear. The response of the DO probe thus varies with the hydrodynamic shear environment near the DO probe in cell culture reactors. The thickness of the liquid film was estimated by using a three-layer model, which describes the flow of DO molecules through the liquid layer, the membrane, and the electrolyte, to the cathode of a DO probe. According to the three-layer model, the current output of the DO probe was a strong function of thickness of the liquid film outside the membrane of the DO probe. A correlation between shear rates on the surface of the probe and the DO saturation reading was obtained by using two concentric cylinders with a rotating inner cylinder. This correlation was then used to characterize the local hydrodynamic shear environment in a cell culture reactor. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
研究了溶氧浓度对产甘油假丝酵母分批发酵生产甘油过程的影响。实验结果表明:当溶氧浓度控制在30%时,C. glycerinogenes的甘油产量、得率和产率达到最高,分别为120.7 g/L、0.575 g/g和1.69 g/(L•h),而糖酵解代谢副产物形成最少。当溶氧浓度为10%时,发酵过程呈现出“巴斯德效应”的特征,生成的酵解代谢副产物维持在较高水平。在快速生长阶段,随着溶氧从10%增加到60%,细胞呼吸类型表现为从厌氧呼吸向好氧呼吸转变,酵解代谢副产物依次减少。在生长稳定期,控制的溶氧浓度越高,酵解代谢副产物乙醇、乙酸等的生成减少。分别选用Logistic方程、Luedeking-Piret方程和Luedeking-Piret-like方程,能较好地模拟细胞生长、甘油合成和葡萄糖消耗的动力学过程。  相似文献   

3.
Lake Kinneret (Israel) has undergone several prominent chemical and biological changes since 1970. Between 1970 and 1991 significant, long-term gradual increase were recorded in epilimnetic dissolved oxygen (DO) concentrations (about 20%), and in pH levels (0.2 units). Concomitantly there was a significant increase in hypolimnetic H2S concentrations (about 75%) and a long-term gradual drop in zooplankton biomass (50%). Since 1994 these trends were reversed and the levels of the three chemical parameters have returned to those found in the 1970's and that of zooplankton to mid 1980's levels. The present study is an attempt to relate some of these long term changes by means of yearly oxygen budgets, based on fluxes of oxygen producing and consuming processes. This analysis raises the possibility that part of the long-term increase in epilimnetic DO and pH between 1970 to 1990 may be attributed to reduced inputs of organic matter from alochthonous sources and possibly to enhanced burial of organic matter in the bed sediments. However, the major cause for the observed increase in epilimnetic DO and pH is increased sedimentation of organic matter to the hypolimnion during stratification. As indicated by the amount of H2S formed in the hypolimnion during stratification added to the amount of oxygen entrapped in this layer at the onset of thermal stratification, between 1970 to 1991 the sedimentation flux of organic matter increased by approximately 40%. It is estimated that during these two decades hypolimnetic respiration increased from ca. 8% of the annual amount of oxygen evolved due to photosynthesis during the early 1970's to ca. 12.5% during the 1980's. The shift in the layer of oxidative processes is suggested to be the result of a multi-annual decline in zooplankton grazing pressure, which led to increased sedimentation of organic matter. The reversed trends for DO, pH and H2S since 1994 may have partially been due to the increase in zooplankton activity and partially due to changes in phytoplankton community structure.  相似文献   

4.
The longitudinal distributions of dissolved oxygen change dramatically during neap-spring tidal cycles in the lower Selangor and Klang Rivers. An oxygen deficit develops in both estuaries when the tidal range is high. The Selangor River inflow is nearly saturated with D.O., but during spring tides D.O. falls to as little as 15% of saturation in the middle reaches of the estuary. The Klang River has low D.O. freshwater input, an oxygen minimum develops during neap tides, and anoxic conditions are produced by spring tides. These oxygen minima are attributed to the high oxygen demand of sediment that rests on the bottom during neap tides and is resuspended during spring tides. The ecological effects of tidal cycling patterns of dissolved oxygen in these Malaysian estuaries need further study, within the context of land use patterns and other human activities.  相似文献   

5.
The rate of oxygen consumption (OC) of 9 species of freshwater mussels was measured under declining dissolved oxygen (DO) concentrations. The effects of temperature for some species also was investigated. The pattern of the OC vs. DO curve for each species was used in a hyperbolic model to compare abilities to regulate OC under low oxygen conditions. At 24.5 °C, Pyganodon grandis (from lakes), Amblema plicata and Quadrula pustulosa (from mud or sand in large rivers), Elliptio complanata (from pool areas in rivers), and Elliptio fisheriana and Elliptio lanceolata (from bank margins of rivers) were better able to maintain OC under low DO than were Villosa iris and Villosa constricta (which inhabit riffles) and Pleurobema cordatum (found in rivers with moderate flow). Villosa iris was especially sensitive to low oxygen conditions. The ability to maintain normal OC at low DO was improved considerably at 16.5 °C for V. iris, P. grandis and E. complanata. It is concluded that oxygen regulation ability appears to be related to the degree of hypoxia a species normally experiences in its habitat type, and it is enhanced at low temperature. The measurement of OC vs. DO may be a useful technique for estimating DO water quality criteria for endangered species because it is noninvasive.  相似文献   

6.
Dissolved oxygen tension and oxygen uptake rate are critical parameters in animal cell culture. However, only scarce information of such variables is available for insect cell culture. In this work, the effect of dissolved oxygen tension (DOT) and the utility of on-line oxygen uptake rate (OUR) measurements in monitoring Spodoptera frugiperda (Sf9) cultures were determined. Sf9 cells were grown at constant dissolved oxygen tensions in the range of 0 to 30%. Sf9 metabolism was affected only at DOT below 10%, as no significant differences on specific growth rate, cell concentration, amino acid consumption/production nor carbohydrates consumption rates were found at DOT between 10 and 30%. The specific growth rate and specific oxygen uptake rate followed typical Monod kinetics with respect to DOT. The calculated max and max were 0.033 h-1 and 3.82×10-10 mole cell-1h-1, respectively, and the corresponding saturation constants were 1.91 and 1.57%, respectively. In all aerated cultures, lactate was consumed only after glucose and fructose had been exhausted. The yield of lactate increased with decreasing DOT. It is proposed, that an apparent DOT in non-instrumented cultures can be inferred from the lactate yield of bioreactors as a function of DOT. Such a concept, can be a useful and important tool for determining the average dissolved oxygen tension in non-instrumented cultures. It was shown that the dynamic behavior of OUR can be correlated with monosaccharide (fructose and glucose) depletion and viable cell concentration. Accordingly, OUR can have two important applications in insect cell culture: for on-line estimation of viable cells, and as a possible feed-back control variable in automatic strategies of nutrient addition.Abbreviations DOT Dissolved oxygen tension - OUR Oxygen uptake rate - specific oxygen uptake rate - specific growth rate - Xv viable cell concentration - CL, C*, and oxygen concentrations in liquid phase, in equilibrium with gas phase, and medium molar concentration, respectively - H Henry's constant - KLa volumetric oxygen transfer coefficient - PT total pressure - oxygen partial pressure - oxygen molar fraction - i discrete element  相似文献   

7.
The antibiotic, difficidin, and its hydroxylated derivative oxydifficidin, were synthesized by cultures of Bacillus subtilis grown on a complex medium. Maximum titers of about 200 and 130 mg/L, respectively, were obtained. In fermentations where the dissolved oxygen tension (DOT) was controlled, the maximum specific growth rate was only reduced below 5% air saturation. DOT had little effect on the volumetric rateof synthesis of oxydifficidin but greatly influenced the rate for difficidin, which was reduced at DOT values below 40% air saturation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
The total respiratory surface area (RSA) of sea bass Dicentrarchus labrax (initial mass 153 ± 27 g), reared in a brackish water recirculation system at 24° C for 3 months under three different oxygen partial pressures of 60, 90 and 140% saturation (87.0, 130.0 and 203.1 torr. respectively), was 351.98 (± 8.90), 264.86 (± 48.20) and 212.90 (± 57.22) mm2 g−1 body mass. RSA was negatively correlated with oxygen availability in the water. In the same experiment, no significant differences in the total length of filaments or frequency of lamellae were observed, although the total length of filaments was shorter in fish cultured under hyperoxia.  相似文献   

9.
溶氧水平对鲫鱼代谢模式的影响   总被引:3,自引:0,他引:3  
张伟  曹振东  付世建 《生态学报》2012,32(18):5806-5812
为了探讨水体溶氧水平对鲫幼鱼(Carassius carassius)运动、消化能力及其交互作用的影响,在(25.0±0.5)℃温度条件下,测定了8(饱和溶氧水平)、2和1mg/L溶氧水平下摄食(饱足摄食)和空腹组(空腹2 d)鲫鱼的临界游泳速度(Ucrit)、运动前耗氧率(MO2pre-exercise)、活跃耗氧率(MO2active)和代谢范围(MS)。摄食诱导的耗氧率上升在各溶氧水平下无显著差异。在饱和溶氧水平下,摄食组和空腹组的Ucrit没有显著差异,但在1和2 mg/L条件下,摄食组的Ucrit显著低于空腹组(P<0.05)。在饱和溶氧水平条件下,消化和运动诱导的耗氧率上升在各个游泳水平均能完全叠加,且摄食组鱼类与空腹组鱼类具有相似的MS和Ucrit和更高的MO2active,提示鲫鱼在常氧下为添加代谢模式。随着溶氧水平下降至2和1mg/L,呼吸能力(摄食组的MO2active)对溶氧水平下降较运动耗氧率更为敏感,消化诱导的耗氧率增加只能在较低游泳速度叠加,与空腹组鱼类比较,摄食组鱼类的MS和Ucrit显著下降,MO2active无显著差异,提示低氧下消化和运动对氧气需求竞争的加剧使其代谢模式转化为消化优先。  相似文献   

10.
To evaluate the relationship between somatic embryogenesis and dissolved oxygen concentration, somatic embryo cultures of carrot (Daucus carota L.) were cultured under various dissolved oxygen concentration levels (bubble free aeration with 4%, 7%, 20%, 30%, and 40% oxygen in flasks). The system used allows dissolved oxygen concentration control without bubble aeration or mixing speed modification. The total number of somatic embryos was not affected by the dissolved oxygen (DO) concentration tested. Even if globular-stage embryos were induced at a low level of oxygen aeration, heart-stage embryo formation was still repressed. Oxygen enrichment (20%, 30% and 40% oxygen) enhanced torpedo and cotyledonary-stage embryo production. The oxygen-enriched aeration was effective in promoting the growth of the late developmental stages. Sugar consumption did not increase when the oxygen concentration was enriched above the ambient level. The number of heart-stage embryos increased as oxygen concentration increased up to the 7% level, while above the 20% level no change in production was observed. The production of cotyledonary-stage embryos was directly related to oxygen concentration. These results support that oxygen-enriched aeration provides oxygen to the low oxygen areas in somatic embryo. After the heat-stage embryos, which were grown at the 7% level were transferred to a flask with ambient, they developed an elongated root part and eventually grew to normal plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
To monitor gas reaction rates in animal cell culture at constant dissolved oxygen concentration (DO) and constant pH it was necessary to develop improved control methods. Decoupling of both controllrs was obtained by manipulation of molar fractions of oxygen and carbon dioxide in the gas phase. Two pairs of DO and pH controllers were designed and tested both in simulation and exprimental runs. The first controller pair was developed for headspace aeration only, whereas the second controller pair was designed for bubble aeration using a microsparger and flushing the headspace with helium. pH was controlled by a conventional discrete PID controller in its velocity form. For DO control two linear state space feedback controllers with parameter adaptation were established. In these controllers the oxygen uptake rate (OUR) was considered as a disturbance and was not included in the mathematical model. The feedback gain adaptation was based on the difference between the actual molar fraction of oxygen at time step n and the initial molar fraction. This difference is related to OUR and was used to increase or decrease the state feedback controller gain (k and k(1), respectively) in a slow manner. With these controllers it was possible to get an excellent online estimate of OUR. In the case of bubble aeration a simple gas phase mass balance was sufficient, whereas during the headspace aeration a liquid phase balance was required. It has been shown that determination of OUR using gas balance requires a significantly better controller performance compared to just keeping DO and pH within reasonable limits. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Different dissolved oxygen concentrations and aeration rates were imposed on a stable mutant of Streptomyces fradiae during the antibiotic-producing phase. At high aeration rate (1 vvm), the tylosin yield in the fermentor broth with dissolved oxygen (DO) concentrations controlled close to 100% saturation (6-8 ppm) increased 10% as against uncontrolled. The rates of cellular growth, oil consumption, and tylosin production were severely reduced when DO concentration fell below 25% saturation, but all resumed to their initial rates when DO was raised to saturation level again. The DO concentration in combination with air flow rate affected the pattern of the antibiotics produced. At high DO levels, an additional macrolide antibiotic, macrocin, was synthesized to more than one-third the amount of tylosin at high aeration rate (1 vvm). On the other hand, tylosin production rate remained constant and no significant amount of macrocin was produced at low aeration rate (0.2 vvm).  相似文献   

13.
14.
Dissolved oxygen (DO) is an important parameter in riverine health. Periphyton and/or macrophytes are frequently the drivers behind the fluctuation of DO levels in aquatic environments; however, the effects of abiotic and biotic factors on biomass and in turn on DO may be variable from river to river. The objective of this paper is to understand which factors govern DO levels in terms of daily minimum DO (DOmin) and daily DO variation (ΔDO) in a major wastewater-impacted river using statistical data analysis and modeling. Both climatic conditions (reflected in water temperature) and hydrometric conditions (flow) were major factors influencing DOmin and ΔDO. The effect of flow on DOmin and ΔDO was discontinuous, depending on the flow magnitude. Nutrient loading from wastewater effluent was not identified to have a significant impact on a daily basis; however, their role over large time scales is unclear. In the data-driven modeling approaches, the non-linear approach using multiple-layer perceptron neural network, which has very flexible architecture, was superior to the linear approach used (multiple linear regression). Although nutrients are likely related to the DOmin and ΔDO, flow and temperature were sufficient to obtain robust prediction in the data-driven modeling. This approach is useful to model and understand complicated processes when their governing mechanisms are not well presented in conceptual- or physically based models.  相似文献   

15.
The effects of dissolved oxygen (DO) on incubating salmonid embryos have been studied extensively in the laboratory but there is little information on levels experienced by salmon embryos in complex natural channels. We monitored 33 natural egg pockets of chum salmon Oncorhynchus keta , from shortly after spawning until emergence, and found that DO levels varied considerably among and within egg pockets over time. Egg pocket DO levels varied from 2–10 mg l−1 at the time of spawning and generally declined during incubation but the declines did not occur in all pockets and were not always steady. Much of the variability may be attributed to local channel topography. Pool tailouts had the highest and least variable DO levels whereas levels in lateral bars were generally lower and more variable. Levels in glides and riffles tended to be intermediate between those in pool tailouts and lateral bars. In spite of the variation in DO levels and habitats used by chum salmon, DO levels were not correlated with egg pocket sediment composition (per cent of the sample<1.0 or 4.0 mm diameter) or with the egg pocket's depth.  相似文献   

16.
Estimates of net primary production, community respiration (R'), and gross primary production (Pg) are developed and presented for the productive layers of eutrophic Onondaga Lake, NY, U.S.A., for time scales ranging from diel to several months, based on 4 months of robotic diel profiles of dissolved oxygen (DO) and temperature. Metabolic rate calculations are made through application of a DO mass balance framework that also accommodates inputs and losses of DO mediated by exchange across the air–water interface and across the lower boundary of the productive layers. It is demonstrated that the dynamics of the flux across the air–water interface are important to the metabolic rate estimates, while vertical mixing-based losses to the underlying layers can be ignored. Study average estimates of R' (1.49 g O2 m–3 d–1) and Pg (1.60 g O2 m–3 d–1) obtained by this non-isolated community approach are consistent with levels reported in the literature for similar chlorophyll a concentrations, based on isolated community (bottle experiment) protocols to measure these metabolic rates. The non-isolated community approach is shown to have limited utility for quantifying day-to-day changes in these rates in this lake, apparently because of horizontal exchange with waters of different DO concentrations. However, this approach may support reliable estimates of metabolic rates at intermediate time scales; e.g., several days to a week. The DO mass balance framework is demonstrated to be valuable in resolving the relative roles of various physical and biological processes in regulating the DO pool of the productive layers.  相似文献   

17.
The biopharmaceutical industry is increasing its use of the WAVE Bioreactor for culturing cells. Although this disposable bioreactor can be equipped to provide real-time pH and dissolved oxygen (DO) monitoring and control, our goal was to develop a process for culturing CHO cells in this system without relying on pH and DO feedback controls. After identifying challenges in culturing cells without controlling for pH and DO in the WAVE Bioreactor, we characterized O(2) and CO(2) transfer in the system. From these cell-free studies, we identified rock rate and rock angle as key parameters affecting O(2) transfer. We also identified the concentration of CO(2) in the incoming gas and the rate of gas flow into the headspace as key parameters affecting CO(2) transfer--and therefore pH--in the disposable culture chamber. Using a full-factorial design to evaluate the rock rate, rock angle, and gas flow rate defined for this WAVE Bioreactor process, we found comparable cell growth and pH profiles in the ranges tested for these three parameters in two CHO cell lines. This process supported cell growth, and maintained pH and DO within our desired range--pH 6.8-7.2 and DO exceeding 20% of air saturation--for six CHO cell lines, and it also demonstrated comparable cell growth and viability with the stirred-tank bioreactor process with online pH and DO control. By eliminating the use of pH and DO probes, this process provides a simple and more cost-effective method for culturing cells in the WAVE Bioreactor.  相似文献   

18.
García  A.  Revilla  J.A.  Medina  R.  Álvarez  C.  Juanes  J.A. 《Hydrobiologia》2002,(1):205-211
The design of sewage discharge systems in estuaries needs to consider the dissolved oxygen concentration among other water quality indicators. Due to the great number of factors affecting the dissolved oxygen, the prediction of the temporal evolution of this element requires the use of mathematical tools. In the case of shallow estuaries with extensive intertidal zones, the complexity of this task increases since the water domain varies continuously. This work describes a numerical model which solves the vertical integrated transport equation including the effect of extensive tidal flats. The model makes use of the tidal velocities computed by a previous run of a hydrodynamic model. This procedure allows the dissolved oxygen modelling to be performed using a larger time step than that used for the velocity field calculation. The numerical scheme developed for the model guarantees that even in the drying and wetting of intertidal areas the water column dissolved oxygen concentration is not modified by numerical errors. The representations of the processes included in the model (advection, dispersion and reaction) have been validated successfully in several theoretical cases. An application to the Urdaibai Estuary, a shallow estuary in the Basque Country, Northern Spain, is also presented.  相似文献   

19.
The effect of oscillating dissolved oxygen (DO) concentration on the metabolism of a clonal isolate of the Spodoptera frugiperda IPLB-Sf21-AE insect cell line was investigated. Specifically, the effect on cell growth, re- combinant protein synthesis, glucose and glutamine consumption, and lactate accumulation was determined. Prior to conducting the oscillating DO experiments, it was found that the DO concentration could be reduced to 15% air saturation without adversely affecting the growth rate. Under these conditions, glucose and glutamine became depleted as the maximum cell density was reached. The introduction of DO oscillations, that is, cycles consisting of 30 min at 15% DO followed by 30 min of anoxia, significantly altered cell metabolism, including inhibition of cell growth and recombinant protein synthesis. The effect of DO oscillations on glucose consumption was dependent on the experimental conditions. Glucose exhaustion occurred when the DO oscillations contained either an "apparent" anoxia period (nitrogen sparging discontinued upon reaching 0% DO) without pH control or a "true" anoxia period (nitrogen sparging continued throughout anoxia period) with pH control. Glucose consumption was significantly decreased, however, when the cells were exposed to a "true" anoxia period without pH control, that is, low pH inhibited glucose utilization. Glutamine uptake was not significantly affected by DO oscillations. Lactate only accumulated in the oscillating DO runs, a finding consistent with previous results demonstrating that significant lactate accumulation only occurs under DO-limited conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
1. When dissolved oxygen levels decline in aquatic systems, prey may be unable to maintain behaviours protecting them from predators. We examined how oxygen availability affected anti‐predator responses in the freshwater clam, Corbicula fluminea. 2. When attacked, bivalves protect their soft tissues by closing their protective valves. This reduces vulnerability to small predators, but ventilation and oxygen uptake are suspended. We found that after a simulated attack, clams under low oxygen conditions reopened their valves sooner than clams under high oxygen conditions, suggesting that hypoxia increases vulnerability to predation. 3. Bivalves may also evade predators through burial into the substratum. Deeper burial confers greater refuge from predators, but increases the costs of ventilation. In a second experiment, we studied how burial depth of C. fluminea is affected by oxygen availability. Additionally, we examined whether clams changed burial depth following a simulated attack by a small predator, and whether this response was affected by oxygen availability. Our results offered partial support for the hypothesis that burial depth is reduced under hypoxic conditions, but the simulated attack did not affect burial depth in any oxygen treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号